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Abstract—When using guessing random additive noise decod-
ing (GRAND) to decode linear block codes (LBCs), the list of
error patterns to be tested is blind to any structure in the
parity-check matrix. This paper starts by proposing simple and
general set partitioning (SP) constraints that reduce the number
of possible patterns to less than half when decoding random
linear codes (RLCs). Sparser parity-check matrices induce a
faster decoding when using SP, but at the expense of a severe per-
formance loss. This loss can be mostly recovered by considering
regular or quasi-regular low-density parity-check (LDPC) codes.
Given their structure, one can apply a simple constraint that, for
given a syndrome, “filters” possible error positions. Subsequently,
a guessing approach is applied to those few positions. The
filtering threshold can be successively relaxed to extend the set
of candidate positions. This technique alone reduces the average
number of membership tests to ≃ 5% of the ones required
by unconstrained GRAND, and often achieves near-to-one-shot
decoding. Combined with SP, the number of membership tests
drops to ≃ 2%, leading to a maximum likelihood (ML) decoding
of LDPC codes 50× faster than unconstrained GRAND.

Index Terms—Constrained GRAND, short codes, random lin-
ear codes (RLCs), LDPC codes, URLLC.

I. INTRODUCTION

For error protection, binary messages with a length of k bits
should be mapped to codewords n bits long, taken from a finite
codebook C, with a code rate R = k

n . Shannon showed that it
is possible to communicate with an error probability that tends
to zero when using a code with sufficiently long codewords
(n → ∞), as long as the code rate is below capacity [1]. When
employing an error correction code (ECC), the asymptotic bit
error probability (BER) decays as BER ∝ e−nϵ(R), and, for
large n, the error exponent is ϵ(R) ≈ − ln BER

n [2]. The capacity
corresponds to the highest code rate for which ϵ(R) > 0.
The statistics of the error exponent of random codes have
been very recently analyzed in [3] when n → ∞, proving
that it converges to its expected value for both high and
low code rates. Shannon’s non-constructive proof showed that
random codes could reach capacity [1], [4], [5], however,
a simple maximum-likelihood (ML) decoder does not exist
for such codes [6]. Decades-long research looked for codes
capable of achieving capacity with some embedded structure,
for which a feasible decoder could exist [7]. The focus was
on reaching capacity, and the length of the codewords was
not a major constraint. Low-density parity-check (LDPC)
codes, also known as Gallager codes [8], later rediscovered by
MacKay and Neal (MN) [9], [10], reach capacity for extremely
large codewords.

Short codes became relevant for ultra-reliable low-latency
communications (URLLC) [11], [12] in 6G [13], [14], even
more than in 5G [15]. The capacity for the finite blocklength
regime was found by Polyanskiy et al. [16], recovering Shan-
non’s capacity when n → ∞. The authors pointed out that very
few prior works had looked at that problem, as considered by
Salema [17, sec. 6.12-6.13], and by Dolinar et al. [18], who
revisited Shannon’s work considering finite codewords [2].

Ordered statistics decoding, which can be used to decode
any LBC with quasi-ML performance [19], [20], has been
proposed for short codes [21], [22]. Using a constrained
serial list Viterbi algorithm, a very low number of codewords
needs to be tested [23], however, this comes at the expense
of a Gaussian elimination preprocessing for each received
codeword, with a complexity that scales with ≈ O(n3).

High-speed decoding of LDPC codes (with n = 1027) has
been presented in [24], which includes a list of other fast
decoders implemented for n between 672 and 1994 bits. With
a focus on fast decoding, short protographs LDPC codes have
been proposed for URLLC, unfortunately enforcing rather
resource-intensive very low code rates (from 1

3 to 1
12 ) [12].

Guessing random additive noise decoding (GRAND) is
a universal ML decoder for codes with moderate redun-
dancy. This includes short or high-rate random linear codes
(RLCs), which attain the maximum possible rates of the finite
blocklength regime [25]. GRAND-type decoders [26] where
originally proposed by Duffy et al. as a hard ML decoder [11],
[25], [27]. The concept shifted the decoding paradigm from
finding the transmitted codeword to finding the error pattern
that corrupted that codeword. This is done by successively
testing error patterns in decreasing order of likelihood. In
the case of RLCs, as for any linear block code (LBC), the
membership test depends entirely on the observed syndrome
[4], [26]. GRAND has been extended to soft-decoding [28],
[29] and GRAND with joint detection has been analyzed in
[30]. GRAND has been applied to fading channels in single-
antenna [31] and multi-antenna systems [32]. GRAND has
been implemented in hardware [33], [34] showing record
energy-efficient decoding [35]. The noise-guessing concept has
also been applied to network coding [36], to quantum ECCs
[37] [38], and even to the purification of quantum links [39].
With GRAND, error-detecting codes, such as CRCs [40], or
even the AES cryptosystem [41], can be turned into an ECC.
GRAND can also compromise physical-layer security [42].

Although the statistics of the error patterns are central in de-
termining the order in which they should be tested [11], [28],



one should also restrict the number of possible error patterns
that are worth testing. This was done in [43] by taking into
account the modulation symbols. One can also take advantage
of the parity-check matrix, H. Given a syndrome, not all error
patterns are compatible with the observed syndrome, which
can greatly reduce the list of possible error patterns, L.

Taking into account H and the observed syndrome, some
constrained versions of GRAND have been proposed, achiev-
ing ML performance and requiring many fewer membership
tests. In [44] constraints associated with the rows of H are
used: for each considered row, the average number of tests
is halved. However, processing those constraints becomes an
extra burden, and the authors recommend using a single row.
The work in [45] proposes splitting H in two matrices, one is
used to generate low-weight error patterns via a (partial) trellis
search and the other is used to check whether the candidate
error patterns can generate the remaining partial syndrome.
In [46] the idea is to start with a list of partial error patterns
ordered in decreasing order of likelihood, as defined by the soft
metrics of the bits, and complete the remaining error position
by testing which position, associated with a column of H, is
compatible with the observed syndrome.

Short RLCs with GRAND have shown faster decoding than
CRC-aided polar (CA-Polar) codes of similar length, or than
standalone polar codes using the Tal-Vardy list decoder [28],
[32], [47]. This paper starts by proposing simple constraints
based on a set partitioning (SP) of the positions of the errors,
which can be applied to any LBC, and is tested with RLCs.
The existence of a very unbalanced number of ones and zeros
in some row of H determines the reduction of complexity.
Sparse RLCs would lead to faster decoding, however, at the
expense of the codes’ performance. By considering short
LDPC codes, one can retain a good performance.

The second proposal in the paper applies to regular or
quasi-regular LDPC codes, that is, codes with a sparse parity-
check matrix with columns of equal weight. In the code’s
construction, we consider a relaxation of the conditions on
the MN and Gallager codes [8]–[10] regarding column over-
laps to randomly construct short LDPC codes. The proposed
technique greatly reduces the number of positions involved
in the guessing stage of the decoder, leading to a dramatic
reduction of the average number of error patterns to be tested.
A sieving mechanism is proposed to gradually increase the set
of possible positions in which errors may have occurred.

The two techniques are eventually combined by applying
SP to the reduced set of candidate positions coming from
the filtering approach, which is accomplished with a simple
intersection of position sets.

Notation: we use MATLAB’s notation to denote rows and
columns of a matrix: the i-th row is H(i, :) and the j-th column
is H(:, j). The Hamming weight of a vector is denoted by its
1-norm, || · ||1. A set of positions is denoted as S = {pi}, i =
1, . . . , |S|. A set can be a set of positions (integers) or a set
of binary vectors (error patterns). The addition in GF(2) is
denoted by ⊕. The overlap between two binary column vectors
is the number of common positions holding 1’s.

II. ENCODING SCHEMES

A. Random Linear Codes: dense and sparse

A column vector a with k independent and identically
distributed (i.i.d.) information bits is encoded by a LBC onto
n-bits long codewords, xb, and then mapped onto binary
phase-shift keying (BPSK) or quadrature phase-shift keying
(QPSK), subjected to additive white Gaussian noise (AWGN).

We start by considering short (systematic) RLCs, given their
performance guarantees, mentioned in Section I. The elements
of the generator matrix G ∈ Fn×k

2 can be chosen uniformly
at random from a Galois field Fq = {0, 1, . . . , q − 1}, where
in this work, q = 2. The G matrix defines a codebook C ={
xb = Ga : a ∈ Fk

2

}
with 2k = 2nR codewords of length n,

which is a linear subspace of the discrete vector space Fn
2 .

For systematic codes, G is of the form G =

[
P
Ik

]
, where

P ∈ F(n−k)×k
2 is a random binary matrix, whose elements

have probabilities: P (1) = p and P (0) = 1−p. When p = 0.5,
we say that the RLC is dense, and for p < 0.5 we say that
the RLC is p-sparse. Ik is the k×k identity matrix associated
with the systematic part of the encoding.

Any LBC can be also defined by the (n − k) × n parity-
check matrix, H = [In−k |P(n−k)×k] ∈ F(n−k)×n

2 , which
spans the null space of G, so that HG = 0, and thus
Hxb = 0,∀xb ∈ C. A received block can be written as
yb = xb⊕e, where e is the binary error vector after detection.
The syndrome, s = [s1, s2, ..., s(n−k)]

T ∈ Fn−k
2 , is computed

as s = Hyb = H(xb ⊕ e) = He. GRAND uses the syndrome
for the membership test, as s = 0 only if yb ⊕ ê ∈ C, for
some candidate error pattern ê.

B. Quasi-regular LDPC codes with relaxed overlapping

Although short RLCs exist for any length and rate, the rules
to design the parity-check matrices of MN codes and LDPC
codes may not be feasible to fulfill for some desired lengths
or rates. In its simplest form, a quasi-regular MN or LDPC
code is constructed via its parity check matrix with two simple
rules [9], [10]: 1) randomly generate different sparse columns
for H, all with equal weight wc, 2) any new column, hnew, can
only be allowed to have an overlap ≤ 1 with all previously
accepted columns. The resulting code is a non-systematic one.
To construct short LDPC codes we relax the second rule and
tolerate overlaps ≤ 2. The overlaps can be easily checked by
the inner product between columns of the extended Hext =
[H |hnew]. The acceptance of a new column must check the
off-diagonal elements of the Gram matrix: a new column hnew
is rejected if any element in HT

extHext − wcI is > 2.
As noted earlier, short RLC codes outperform short LDPC

codes. However, for reasons that will become apparent in
Section IV, having an H with equal column weights (quasi-
regular LDPC codes), will allow to strongly reduce the number
of candidate error positions. Regular LDPC codes would
additionally have an equal weight, wr, in all its rows, and
could be used equally. Given its simpler construction, only
quasi-regular codes will be considered.



III. SET PARTITIONING FOR LINEAR BLOCK CODES

We start by proposing the partition of the n positions of a
received block yb into sets. This allows to generate a shorter
list of admissible error patterns, L.

Definitions: the positions of the syndrome containing a 1
are called the flagged positions of the syndrome, and their
number is F = ||s||1. In all of them, s(f) = 1, for f ∈
{1, 2, . . . , n − k}. The rows of H that are associated with
these positions are called the flagged rows. The flagged rows
are stacked to form the matrix H-reduced, denoted as Hred.
The number of 1’s in the i-th row of H is called the support of
the row, and is denoted as supp{H(i, :)}, as in [44]. Because
s = He, we say that an error pattern e activates the j-th
column of H when e(j) = 1. Each row of H has a set of ones,
whose elements are the positions of the row that contain a 1,
which is denoted as S1, and a set of zeros, which comprises
the positions of the row holding a 0, which is denoted as S0.
The sizes of these sets are, respectively, |S1| and |S0|.

A. Construction of the admissible error sets

For a clearer explanation, we start by independently
describing how the error patterns of weights
t = ||e||1 = 1, 2, 3 are generated, and later we generalize to
any even or odd weight.

1) One error case: In the case of a single error corrupting
the block of n bits, there is no need to run membership tests
by successively flipping single bits. Given that s = He, this
situation corresponds to the case where only one column of
H is active. This amounts to identifying whether the observed
s is a copy of some column of H. If only one error exists in
position p1 = j, then s = H(:, j).

2) Two errors case: With two errors, any flagged position,
f , in s can only result from two active columns H(:, p1) and
H(:, p2), where the flagged row H(f, :) has in the positions
H(f, p1) and H(f, p2) different bits. This means that the
position of one of the errors must be in the set of ones, S1,
of the row H(f, :) while the other error must necessarily be
contained in the set of zeros, S0, of that same row.

The flagged rows are used to build the smaller matrix
Hred. The row of Hred that discloses more information about
the location of the two errors is the one with the highest
unbalance between the number of 0’s and the number of 1’s,
i.e., the one where the sizes of the sets S1 and S0 that are
most different. While the location of two errors among the
n positions, all drawn from the same set, entails |L2| =

(
n
2

)
possible error patterns, the list of all possible error patterns
when the erroneous positions come from two disjoint sets
is defined by the Cartesian product S1 × S0, whose size is
|S1 × S0| = |S1| · |S0|. Note that S1 × S0 is a set of error
patterns {ê1, ê2, . . . , ê|S1×S0|}, where each error pattern is a
set of positions, i.e., êi = {p1, p2, . . . , pt}.

The number of candidate error patterns can be minimized by
choosing the row of Hred that has the minimum support or the

maximum support. From an information-theoretic perspective,
that is the most informative row about the locations of the
errors. The remaining entropy is subsequently dealt with by
applying a noise-guessing approach that only considers the
reduced set of candidate error patterns. The two extreme cases
correspond to: a) |S1| = 1, where the number of error patterns
with two errors is |L2| = 1·(n−1), which is the case where S1

fully specifies the location of one of the two errors, leaving the
other error position to be guessed among the remaining n− 1
positions; b) |S1| = |S0| = n

2 , leading to |L2| = n
2 · n

2 = n2

4 .
In benefit of the algorithmic complexity of the decoder, we
opt for only looking at the row of Hred with the fewest 1’s:

hT
m = argmin

1≤i≤n−k
supp{Hred(i, :)}. (1)

This option becomes optimal when sparse codes are consid-
ered, as hT

m will always be the most unbalanced row.
In the case of t = 2, two other sets should also be formed:

the full set, F , which contains the positions pj where the
columns of Hred only have 1’s (i.e., the columns of Hred with
weight F ), and the null set, N , which contains the positions
pj where the columns of Hred are a zero vector. If one error
p1 ∈ F , then it is easy to see that, necessarily, p2 ∈ N .
Therefore, we have a new set of possible error patterns given
by another Cartesian product: F × N . Finally, the complete
list of admissible error patterns is L2 = (S1×S0)∪ (F ×N ),
with size |L2| = |S1| · |S0|+ |F| · |N |.

3) Three errors case: In the case of t = 3 errors, the
flagged rows, and in particular the minimum support row, hT

m,
can only trigger the flag if one of the two situations happens:
a) all three positions in error p1, p2, p3 ∈ |S1| and thus one

has to search through all the possible error patterns with
three positions in S1;

b) one error activated a 1 in the row and the other two lie
“hidden” in the 0’s, i.e., p1 ∈ S1 and p2, p3 ∈ S0. Thus,
one has to search through error patterns resulting from the
Cartesian product of S1 ×H, where H is the set of error
patterns having all the combinations of two error positions
“hidding” in S0.

With these constraints, the number of admissible error
patterns with weight three is |L3| =

(|S1|
3

)
+|S1|·

(|S0|
2

)
≪

(
n
3

)
.

4) Any even or odd number of errors: Given that only an
odd number of error positions in S1 can cause the syndrome
flag associated with hT

m, when considering t errors, the set split
is performed considering 2a + 1 positions in S1, for a ∈ Z+

0

and 2a+1 ≤ t, and the remaining positions are errors “hidden”
in S0. The cases detailed for t = 1, 2, 3 are particular examples
of this simple rule. For simplicity, the full set and the null set
are recommended to be used only in the t = 2 case. Without
those two sets, in general, the total number of error patterns
to be tested is:

|L| =
t∑

i=0

|Li| = 1 +

t∑
iodd

(
|S1|
iodd

)
·
(

|S0|
t− iodd

)
≪

t∑
i=0

(
n

i

)
.

(2)



IV. SIEVING GRAND FOR QUASI-REGULAR LDPC CODES

When the parity-check matrix is both sparse and all columns
have equal Hamming weight, such as the ones of LDPC codes,
the number of candidate error positions that need to be tested
can be greatly reduced using a simple constraint (or “filter”),
capable of gradually sieving candidate positions into a set,
P , with more positions being added to the set at different
iterations. (See sieve algorithms for the closest vector problem
in lattices [48], [49]). At each iteration, a GRAND approach
only considers error patterns formed by error positions that
belong to that reduced set of positions. We will next define that
set and then explain the two proposed filtering mechanisms.

After the l-th iteration, the set is P(l) = {pj}, containing
the positions pj , j = 1, 2, · · · , |P(l)|. The size of the set
increases monotonically, with more positions added to it in
each iteration. The number of iterations is upper bounded by
wc−1. When the algorithm reaches iteration l = wc−1 without
finding the ML error pattern in any of the previous iterations,
all the n positions will be in the set in that last iteration. After
the first iteration, the set of candidate positions P(1) is usually
very small and, although |P(l)| grows rapidly with each
iteration, the number of error patterns to be tested for t errors
in the l-th iteration is

(|P(l)|
t

)
≪

(
n
t

)
, for k = 1, 2, · · · , wc−1.

Note that the maximum number of iterations depends on the
column weights of the LDPC code; nevertheless, the decoding
can successfully terminate at a much earlier iteration if the ML
ê has been found.

There are two mechanisms to reduce the number of error
patterns: A) by looking at the weight of the syndrome and B)
by filtering error positions, as described in the following.

A. Discarding error patterns by weight

By looking at the weight of the error syndrome, ||e||1 it is
possible to immediately discard some error patterns. For an
H where all columns have constant weight wc, the maximum
weight of the syndrome can bear when t errors affect a
codeword and is max{||s||1} = t · wc. This happens when
all the 1’s in the t activated columns of H are in disjoint
rows, i.e., with none of them overlapping. When overlaps of
columns Hred(:, j) take place, ||s||1 ≤ t ·wc. Therefore, when
||s||1 > m · wc, with m ∈ Z+, the decoder should only test
error pattern with weights ||ê||1 > m.

B. Filtering candidate error positions

We start by constructing Hred ∈ FF×n
2 , consisting of the

F flagged rows of H, as defined in Section III. The sieving
(or filtering) mechanism depends on the columns’ Hamming
weights: Σ(j) = ||Hred(:, j)||1, for j = 1, . . . n. These weights
can be simply computed by the sums

∑F
i=1 Hred(i, j), for j =

1, . . . n, corresponding to the number of 1’s in each column
of Hred. The iterations begin with an empty set of candidate
positions P(0) = ∅. Next, more candidate positions are added
such that P(1) = ∅ ∪ {pi}new. The mechanism for accepting
positions into the candidate set is:

pj ∈ P(l) if ||Hred(:, j)||1 ≥ wth(l), (3)

where wth(l) is the value of a weight threshold during the
l-th iteration, starting at wth(1) = wc. (While the number of
possible positions is |P(l)| < t , wth is lowered by one unit:
wth(l+ 1) = wth(l)− 1.) At this point, the error patterns are
tested running GRAND on the reduced set of positions P(l),
involving only |L| =

(|P(l)|
t

)
≪

(
n
t

)
candidate error patterns.

The threshold is successively reduced in unit steps until the set
of candidate positions P(l) includes all the t positions where
the errors lie, in which case the decoding of the ML error
pattern ê will take place during the guessing stage.

For a visualization of these calculations, consider the fol-
lowing example:0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
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0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
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 |𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠|
𝑡

• The set of candidate positions is obtained by filtering the columns of Hred whose weight is ≥ sum threshold.
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𝐇red =

Sum  =

𝑠
1
= 8

In this example, the different colors indicate the set of new
positions that are added to the pool at each iteration. In the first
iteration, the candidate positions are P(1) = {p1, p2, p3} =
{2, 10, 30} (colored in blue), for the first threshold wth(1) =
4. The set of candidate positions is subsequently extended to
P(2) = {p1, p2, p3, p4, p5} = {2, 6, 10, 19, 23, 30} (colored
in green), for wth(2) = 3, and finally extended (if needed)
to include the remaining positions where ||Hred(:, j)||1 ≥ 2
(colored orange).

Error patterns that have been tested in a previous iteration
do not need to be re-tested after adding new positions to P ,
as only error patterns that involve new positions added during
each iteration need to be considered.

V. RESULTS

The system model described in Section II was numerically
evaluated with RLCs (128,103), and an LDPC code (128,104)
with wc = 4 and dmin = 7 (i.e., capable of correcting at least
t = 3 errors), constructed as described in Subsection II-B,
so that both systems have R ≈ 0.8. For bit energy Eb and
noise power spectral density N0, we use the block error rate
(BLER) as the performance metric, and the average number of
error patterns tested as the complexity metric, both assessed
as a function of Eb/N0. In the case of RLCs, each transmitted
message was assigned a randomly generated code so that the
average performance of RLCs is measured. Let t = 1, 2, 3
be the maximum number of errors that a distance-bounded
GRAND-based decoder aims to correct.

Fig.1 depicts the results using RLCs with set partitioning
GRAND (SP-GRAND) compared to unconstrained GRAND.
All BLERs are identical (all curves overlap) and the com-
plexity curves show that SP-GRAND is substantially faster
than unconstrained GRAND. For t = 1, only one membership
check is needed, as seen in Section III-A1. For the more inter-
esting t = 2, 3, SP-GRAND achieves 68% and 55% reductions
if the average number of membership tests, respectively.
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Fig. 1. BLER performance (left) and decoding complexity (right) for t =
1, 2, 3, using RLC (128,103) with set partitioning GRAND (SP-GRAND)
compared with original GRAND.

Fig.2 compares sieving GRAND (S-GRAND) and uncon-
strained GRAND for the LDPC code (128,104). The over-
lapping BLER curves confirm that S-GRAND attains ML
decoding, given that all possible error patterns can eventually
be tested. It is important to note that the RLCs outperform the
similar-size LDPC code (comparing the left figures of Fig. 1
and Fig. 2). The 0.5 dB loss is due to the LDPC code itself
rather than to the filtering mechanism applied in the decoding.
The code’s structure allows for much faster decoding, which is
traded off by its slightly less good performance. As seen, the S-
GRAND approach sharply reduces the number of membership
tests needed by unconstrained GRAND, purging ≈ 97% of
the original

∑t
i=0

(
n
i

)
tests for t = 2, 3. This is achieved

by considering a set of admissible error positions P(l), of
size |P(l)| ≪ n, which includes the correct error positions
with a monotonically increasing probability as the iterations
unfold. Although in some cases, to find the ML ê the threshold
has to be lowered down to wth = 2, this happens with low
probability, thus the average number of positions considered
in the guessing stage remains consistently ≪ n.

The SP and sieving techniques can be easily combined
by applying SP to the candidate positions filtered at each
iteration, leading to the here proposed set partitioning and
sieving GRAND (SPS-GRAND). The resulting decoding of
the LDPC code (128,104) is shown in Fig.3. As expected, SPS-
GRAND has the same BLER as unconstrained GRAND. The
complexity comparison reveals that SPS-GRAND outperforms
GRAND outstandingly, eliminating on average over 98% of
the membership tests, even when looking for t = 3 errors.

VI. CONCLUSION

This paper started by proposing a simple constraint for
the decoding of any LBC. The constraint splits the positions
of the errors into sets, allowing one to construct the error
patterns by means of Cartesian between sets. With this set
partitioning the complexity reduction is more accentuated with
sparser codes. By using short quasi-regular LDPC codes, one
can benefit from that without incurring a severe performance
loss. For such codes, a simple filtering technique is used to
greatly reduce the candidate positions where the error positions
may lie. The technique is based on the “fingerprints” that
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Fig. 2. BLER performance (left) and decoding complexity (right) for t =
1, 2, 3, using a LDPC code (128,104) with sieving GRAND (S-GRAND)
compared with original GRAND.
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Fig. 3. BLER performance (left) and decoding complexity (right) for t =
1, 2, 3, using LDPC code (128,104) with combined set partitioning and sieving
GRAND (SPS-GRAND) compared with original GRAND.

the active columns of the parity-check matrix leave on the
observed syndrome. This technique starts by selecting a small
pool of positions where the errors most likely lie, and then
GRAND runs on those few positions only. This is done
iteratively, allowing more positions to be added to that pool
until the ML error pattern is found. The number of these
iterations is bounded by the weight of the columns of the
parity-check matrix. The sieving approach finds the ML error
pattern after testing on average only 5% of the original ones
in unconstrained GRAND. The two techniques are entirely
complementary and, when applied jointly, the complexity is
reduced to about 2% of the original unconstrained GRAND.
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APPENDIX

This Appendix offers additional comments and details re-
garding the two main proposals for set-splitting and sieving
candidate positions.

We start by noting that the proposed decoder is a distance-
bounded decoder, which does not try to decode beyond the
number of errors t dictated by the minimum Hamming dis-
tance, dmin. Distance-bounded decoders do not reach capacity,
with n → ∞, as to reach capacity one has to be able to decode
errors beyond t = dmin−1

2 [10] [4, Ch.13]. However, in the finite
blocklength regime imposed in URLLC, this distinction has no
practical meaning.

A. Distribution of the minimum support

The impact of splitting the n positions into the set of ones,
S1, and the set of zeros, S0, depends on how low the weight of
the minimum support row of Hred is. Therefore, it is important
to look at the probability distribution of this weight ||hT

m||1,
which corresponds to the size |S1| in the minimum support
row. The probability density function (PDF) of |S1| is plotted
in Fig. 4 for RLCs (128,103) with SP-GRAND. P (|S1|) is a
obviously a discrete variable. Its histogram was obtained via
simulation and plotted as a continuous-variable approximation
for easier visualization. Given that H = [In−k |P(n−k)×k] ∈
F(n−k)×n
2 , dense RLCs (128,103) have on average 65 1s’ in

each row of H: n
2 coming from the elements in the P ∈

F(n−k)×k
2 submatrix, plus one coming from the identity. The

average weight of the minimum support row, E{||hT
m||1} =

E{|S1|}, must be lower than n
2 + 1. As observed in Fig. 4,

the mean value E{|S1|} = 45, and therefore E{|S0|} = n −
E{|S1| = 83. In this case, and considering t = 3, the number
of possible error patterns is |L3| =

(
45
3

)
+ 45 ·

(
83
2

)
≪

(
128
3

)
.

Fig. 5 compares the number of error patterns required by
unconstrained GRAND with the number of error patterns
generated by the Cartesian products when set-partitioning
is applied, considering different weights of the minimum
support row, |S1|. The number of error patterns is plotted as
a function of the codewords’ length 2 ≤ n ≤ 128, and in
the case when one is trying to guess the locations of t = 2
errors. In the case of unconstrained GRAND (blue curve), the
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Fig. 4. PDF (continuous-variable approximation) for the number of 1’s in the
minimum support row of Hred, using RLC (128,103).
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Fig. 5. Number of error patterns considered in unconstrained GRAND and in
set-partitioning GRAND (SP-GRAND) for different weights of the minimum
support row, |S1|, when looking for t = 2 errors.

number of error patterns is |L2| =
(
n
2

)
. When applying set-

partitioning GRAND, the worst-case scenario (black curve)
corresponds to the case where |S1| = |S0| = n

2 , in which
case |L2| = n

2 · n
2 = n2

4 . This upper bound for SP-GRAND is
always much lower than

(
n
2

)
. The figure also depicts several

curves for a varying number of |S1| and |S0| = n−|S1| pairs.
In all cases, |L2| = |S1 × S0| = |S1| · |S0| ≪

(
n
2

)
.

B. Distribution of |P(l)| containing the t errors

The sieving approach adds at each iteration l a new set
of positions to the set P(l−1), leading to P(l). A positive
membership test takes place at the l-th iteration if and only
if the correct t error positions {p1, p2, . . . , pt} ∈ P(l). Fig. 6
shows the continuous-variable approximated PDF of the size
|P(l)| that contains all the t = 3 errors for an LDPC code
(128,104) with the sieving decoder (S-GRAND). We get that
the set sizes |P(l)| ≤ 10 concentrate ≈ 74% of the probability
mass function (as seen in the cumulative distribution function
(CDF) plotted in Fig. 6b ). This very small pool of candidate
positions translates into an extreme reduction of the average
number of error patterns to be tested.

C. Distribution of the minimum support with positions filtering

After applying the filtering mechanism described in Section
IV, the positions in the set P(l) can be intersected with the
ones in the S1 and S0 sets, resulting in the elimination of
many of the positions in both S1 and S0. Fig. 7 depicts
the continuous-variable approximated PDF of the number of
positions in the intersection |S1| ∩ P(l), using the LDPC
code (128,104), for t = 3. Compared with Fig. 4, where
E{|S1|} = 45, we now see in Fig. 7 that, when set partitioning
and the sieving technique are applied simultaneously, |S1| is
always below 20 positions with probability 1.
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Fig. 6. PDF (continuous-variable approximation), and CDF, for the number
of positions in the set P(l) that contains all the t errors. The results are for
the LDPC code (128,104), with the decoder searching for up to t = 3 errors.
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Fig. 7. PDF (continuous-variable approximation) for the number of all 1’s in
P(l), after SPS-GRAND, using the LDPC code (128,104), with t = 3.

D. Set partitioning GRAND with sparse RLCs

The number of candidate error patterns constructed via
Cartesian products of two position sets gets smaller when
the entropy of one of the sets is lower; fewer elements in
a set provide more information about the errors’ locations.
Sparse RLCs, as defined in Section II-A necessarily verify
the objective of having a low minimum support row hT

m. We
assessed the performance and the complexity of SP-GRAND
for RLCs (128, 103) with different sparsity values in their
parity-check matrix, as shown in Fig. 8, Fig. 9 and Fig. 10 for

2 3 4 5 6 7 8 9 10
10-5

10-4

10-3

10-2

10-1

100

B
L
E

R

2 3 4 5 6 7 8 9 10
100

101

102

103

104

105

106

A
vg

. 
n
u
m

. 
o
f 
te

st
s 

p
e
r 

b
lo

ck

Fig. 8. BLER performance (left) and decoding complexity (right) for the
number of error t = 1, using RLC (128,103) and BPSK, with p-sparse
(indicated as a percentage) parity-check matrices, using set partitioning
GRAND.
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Fig. 9. BLER performance (left) and decoding complexity (right) for the
number of errors t = 2, using RLC (128,103) and BPSK, with p-sparse
(indicated as a percentage) parity-check matrices, using set partitioning
GRAND.
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Fig. 10. BLER performance (left) and decoding complexity (right) for
the number of errors t = 3, using RLC (128,103) and BPSK, with p-
sparse (indicated as a percentage) parity-check matrices, using set partitioning
GRAND.

bounded-decoders with t = 1, 2, 3, respectively. All figures in-
clude the performances of uncoded transmissions as well as the
BLER and complexity results with SP-GRAND. With a sparser
parity-check matrix, the weight of the minimum support row
is lower and a faster decoding is possible, however, at the
expense of a severe deterioration of the codes’ performance,
as one would expect (as they lack the proper construction of
LDPC codes). It should be noted that the very sparse RLC
codes can lead to a BLER even higher than the one of the
uncoded transmission. This is because the added redundant



bits contribute to more errors and the energy spent in their
transmission is assigned to Eb, while this extra redundancy
does not contribute to a codeword correction that compensates
for that extra spent energy.

E. Sieving-GRAND technique

The technique proposed in Section IV for iteratively sieving
candidate error positions, and also discarding error patterns by
their weight, is presented in the flow chart in Fig. 11.
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Fig. 11. Sieving (or filtering) candidate positions using i) a column weight
threshold, and ii) the weight of the syndrome to discard error weights.

F. Mixing set partitioning and filtering

Here, a more detailed explanation of the filtering process
is provided, followed by a more comprehensive explanation
of how its combination with the set partitioning technique is
implemented. To shed light on the concepts, an example with
a very small parity-check matrix, with n = 30 and n−k = 20,
will be discussed and illustrated bellow.

• Let us consider a number of flags in the syndrome F =
||s||1 = 8.

• both the flags and the flagged rows are highlighted by red
arrows (rows {1, 3, 4, 5, 7, 9, 14, 16}).

• the flagged rows are stacked to form Hred.
• the columns’ Hamming weights are obtained: Σ(j) =

||Hred(:, j)||1, and the positions P(1) = {2, 10, 30} are
first selected, for a threshold wth = 4 (colored blue),
P(2) = {2, 6, 10, 19, 23, 30}, for wth = 3 (colored
green), and finally extended (if needed) to include the
remaining positions where ||Hred(:, j)||1 ≥ 2 (colored
orange).

• at this stage, the candidate error patterns are tested by
running GRAND exclusively on a smaller subset of
positions |P(l)| = 6 including only |Lt| =

(|P(l)|
t

)
≪

(
n
t

)
candidate error patterns. When looking for t = 3 errors,
|L3| = 20 ≪ 4060.
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0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 1

1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0

0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
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• The set of candidate positions is obtained by filtering the columns of Hred whose weight is ≥ sum threshold.

1

3
4
5

7

9

14

16
0 4 2 1 2 3 2 2 1 4 2 2 1 1 1 1 2 2 3 0 2 1 3 2 1 1 1 2 1 4

0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 1

0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1

0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝐇𝑟𝑒𝑑 =

Sum  =

𝑠
1
= 8

0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 1

0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1

0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝐇red =

0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 1

1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0

0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
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• The set of candidate positions is obtained by filtering the columns of Hred whose weight is ≥ sum threshold.

1

3
4
5

7

9

14

16
0 4 2 1 2 3 2 2 1 4 2 2 1 1 1 1 2 2 3 0 2 1 3 2 1 1 1 2 1 4

0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 1

0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1

0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝐇red =

Sum  =

𝑠
1
= 8

0 4 2 1 2 3 2 2 1 4 2 2 1 1 1 1 2 2 3 0 2 1 3 2 1 1 1 2 1 4

0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 10 0 0 0 0 1 1 0 0 0 0

0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 1

0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 10 0 1 1 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 00 0 0 0 1 0 0 0 0 0 1

0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 00 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 00 1 0 1 1 0 0 0 1 0 1

0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 00 1 0 0 0 0 0 1 0 0 1

0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0

𝐇red =

min supp

||𝐇red(: , 𝑗)||1 ≥ 𝑤𝑡ℎ(𝑙) =
✓  ×××××

The simultaneous application of set partitioning and sieving
techniques is exemplified at the end of the example above. It
begins with S1 and S0, as defined by the minimum support
row, and next, the set P(l) intersects both S1 and S0. The
admissible error patterns are generated by applying the sets
partitioning technique while considering only the remaining
positions in P(l) ∩ S1 and P(l) ∩ S0. In this example, |P(l) ∩
S1| = 1, and |P(l) ∩ S0| = 5. The number of candidate error
patterns is |L3| = 1× 5 ≪ 4060.

G. Results for a coded 16-QAM system

The proposed set partitioning and sieving GRAND (SPS-
GRAND) operates at a bit level on the received LDPC code-
words; nevertheless, the M-arity of the modulation modifies
the performance of a coded system. Here, we present the
BLER and complexity results when using the same coding
schemes, now with 16-QAM (quadrature amplitude modula-
tion; M = 16) with Gray mapping. The results are shown
in Fig. 12, Fig. 13 and Fig.14, in the same order as in the
main text. Fig.12 illustrates the performance and decoding
complexity of RLC (128,103) using set partitioning GRAND
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Fig. 12. BLER performance (left) and decoding complexity (right) for t =
1, 2, 3, using RLC (128,103) and 16-QAM, with set partitioning GRAND
(SP-GRAND) compared with unconstrained GRAND.
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Fig. 13. BLER performance (left) and decoding complexity (right) for t =
1, 2, 3, using a LDPC code (128,104) and 16-QAM, with sieving GRAND
(S-GRAND) compared with unconstrained GRAND.
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Fig. 14. BLER performance (left) and decoding complexity (right) for
t = 1, 2, 3, using LDPC code (128,104) and 16-QAM, with combined set par-
titioning and sieving GRAND (SPS-GRAND) compared with unconstrained
GRAND.

(SP-GRAND), in comparison to unconstrained GRAND. The
BLER remains identical for SP-GRAND and unconstrained
GRAND across the analyzed range of Eb/N0, with the curves
overlapping. As with M = 2 or M = 4 (BPSK or QPSK), with
16-QAM SP-GRAND also significantly reduces the number
of tests needed with unconstrained GRAND: for t = 2, 3 the
savings are over 70%. (In the case with t = 1, as seen in
Section III-A1, only a direct comparison of s with all columns
H(:, j) is needed, and only one membership test is involved.)

Fig.13 compares performances and decoding complexities
of sieving GRAND (S-GRAND) and the original GRAND,

when decoding the LDPC code (128,104). The BLER curves
for both S-GRAND and GRAND perfectly overlap, indicating
that in this setup S-GRAND also achieves the performance of
ML decoding. As observed, S-GRAND significantly reduces
the number of membership tests required by unconstrained
GRAND, eliminating over 95% of the original

∑t
i=0

(
n
i

)
membership tests.

The decoded output of mixing set-partitioning GRAND and
sieving GRAND for an LDPC code (128,104) is shown in
Fig.14. As anticipated, within the specified Eb/N0 range, SPS-
GRAND holds the same BLER as unconstrained GRAND.
Regarding complexity savings, the results also show the supe-
riority of SPS-GRAND, ditching over 98% of the membership
tests needed on average.


