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”It is generally not possible for radios to receive and transmit

on the same frequency band because of the interference that results.”

Andrea Goldsmith, Wireless Communications [1]
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Abstract

With regard to the forthcoming requirements for mobile services in 5G networks, several new technolo-

gies have recently become the focus of leading-edge research. One of those is in-band full-duplex

communications. The idea is to simply employ the same frequency band to simultaneously transmit and

receive information, allowing more spectrally efficient communications when compared to the traditional

half-duplex or out-of-band full-duplex counterparts. By breaking a long-held assumption in wireless

communications, in-band full-duplex may double the throughput or reduce by half the allocated band-

width in future transmissions. Nevertheless, the self-inflected interference, that naturally arises, poses

the major problem to the use of this technique, enhanced when in presence of system impairments.

Therefore, this thesis aims to study self-interference suppression methods, in multi-hop relaying en-

vironments, and proposes different systems where it may contribute the most, focusing solely on the

digital domain. Particularly, digital spatial suppression filters are studied, as well as feedback adaptive

filtering is proposed for relay systems with multiple-input multiple-out (MIMO) antennas. Furthermore,

the orthogonal properties of large-scale arrays are resorted to, such that an extra level of mitigation is

achieved. In this case, the relay system energy efficiency is maximized by finding the optimal transmit

powers, while maintaining a certain individual link quality. Finally, physical layer network coding (PLNC)

is combined with bidirectional in-band full-duplex relaying, reducing the allocated resources down to the

same of machine-to-machine communication. For this scenario, the effect of massive MIMO is likewise

addressed, and an algorithm that maximizes the system total achievable rate is derived.

Keywords: 5G, in-band full-duplex, massive MIMO, physical layer network coding, multi-hop

communications, optimal power allocation.
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Resumo

Recentemente, tendo em consideração os requisitos das comunicações móveis em redes 5G, têm vindo

a ser desenvolvidas novas tecnologias. Uma destas tecnologias é in-band full-duplex, que consiste em

transmitir e receber sem fios sinais na mesma banda de frequências e em simultâneo, permitindo um

aumento da eficiência espectral quando comparada com as transmissões half-duplex. Este conceito,

que vem quebrar uma ideia pré-estabelecida, permitirá duplicar o débito binário ou reduzir para metade

a banda utilizada nas transmissões. No entanto, a interferência gerada pelo próprio transmissor é neste

momento o maior problema no uso desta tecnologia. Dessa forma, esta tese visa estudar técnicas

de supressão da auto-interferência, em redes com múltiplos repetidores e numa perspetiva de proces-

samento digital, propondo sistemas onde estas técnicas podem ser preponderantes. Nomeadamente,

é estudado o uso de filtros espaciais de supressão, assim como é proposta a utilização de filtragem

adaptativa em repetidores com múltiplas antenas. Faz-se uso também das propriedades de sistemas

com elevado número de antenas de forma a que seja possı́vel aumentar o ganho na supressão desta

interferência. Neste caso, a eficiência energética é maximizada através da escolha das potências a

transmitir, mantendo o nı́vel de qualidade exigido pelas ligações. Finalmente, é integrada codificação da

camada fı́sica de rede em comunicação in-band full-duplex bidirecional, reduzindo o número de recur-

sos necessários neste cenário para o mesmo que comunicações ponto-a-ponto. O efeito da utilização

de um número elevado de antenas é também estudado, assim como é proposto um algoritmo que

maximiza a capacidade do sistema.

Palavras-chave: 5G, in-band full-duplex, MIMO maciço, codificação da camada fı́sica de

rede, comunicação com múltiplos saltos, alocação ótima de potência.
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Chapter 1

Introduction

The constant demand for higher rates and lower latencies has already driven the scientific community

and industry to pursue a new generation of mobile communications. Simply known as the fifth genera-

tion (5G), and with expected release date in 2020, telecommunications are about to go through a deep

change in their foundations. One of those central changes is the long-held, but now obsolete, assump-

tion that radios can only simultaneously transmit and receive in different frequency bands on the same

channel. Thus, the concept of in-band full-duplex communication, i.e., simultaneously employing the

same frequency band to transmit and receive data in wireless nodes, will certainly incorporate this new

generation, providing a leap forward in terms of spectral usage efficiency. Moreover, when integrated

under a physical layer network perspective or when combined with the rise in the number of antennas

at base stations, its gains are beyond those expected few years ago.

This first chapter presents the main objective of this thesis and the reasons that motivated the work on

in-band full-duplex communications. An historical overview of telecommunications, the current cutting-

edge research and how this thesis may contribute to the progress of future 5G communications are also

assessed. In addition, the document organization and academic contributions are mentioned.

1.1 Historical Overview

In recent decades, the topic of mobile communication has been a subject of interest to the research and

industry communities. Several different technologies were studied so that a standard system could be

implemented, allowing wireless communications to be a reality today. In the last 20 years, different major

market requirements have appeared, pushing the telecommunication industry to develop new solutions.

Firstly, the need for wireless real-time voice communication boosted the first generation (1G) of analog

cellular transmissions. Then, short message service (SMS) was incorporated in a digital system that

led to the second mobile generation (2G), the first to use a digital transmission. Due to the popularity of

laptops and wireless local access networks (WLAN), wireless data connectivity became an hot topic and

with it the third generation (3G) emerged. Currently, the fourth generation (4G) of wireless connectivity

has been derived from the need for faster links, aiming to provide higher bandwidth access anywhere.
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Currently, the fifth generation (5G) is in a research stage where several methods and techniques are

being explored, aiming to be among the wireless connectivity technologies used in 2020. For that

reason, this thesis aims to study the problems rising from in-band full-duplex systems and develop some

new considerations to make them a reality in the next wireless generation of communications.

1.2 Motivation

The demand of data exchanged in future wireless networks will certainly pose new challenges to the

industry, and particularly to research and development (R&D) departments, requiring a shift of paradigm

when compared to that observed today. Exponential growth is expected in cellular data traffic and a

thousand fold increase upon the current mobile data volume, in the next 10 years [2]. This demand for

broadband cellular access, mainly for video applications, is driving the conceptualization of future radio

mobile networks. The pursuit for the next generation of cellular communications has already started,

boosted by European research organizations and projects such as 5GPP [3], 5GNOW [4] and METIS

[5], but also by the academia and industry all over the world. The main target is to create a standard

communication protocol capable of solving expected application requirements in 2020. Among them

are the recently popular topic of the Internet of Things (IoT), involving machine-type communication,

the gigabit wireless connectivity (giving the same experience as in a wired connection), the concept of

tactile Internet (real-time applications requiring latency of 1 ms) and many others [6]. As defined by the

METIS European project [2, 7], the future architecture should support:

• Mobile traffic volume 1000 times higher;

• Support 10 to 100 times more devices connected;

• Increase of up to 100 times throughput capacity;

• 5 times reduced latency.

Several different radio technologies are currently being studied and developed in order to achieve

the above mentioned specifications. For example, in [8] the five major technologies that are believed to

potentially fulfill 5G needs are pointed out:

Device-centric architectures: Changing the interaction between the base-station and the users,

exploiting new control and data flows;

Millimeter waves: Moving towards higher frequencies, due to the spectrum scarcity at the current

used carrier frequencies;

Massive MIMO: Using various antennas for multiplexing data for users at the same time instant and

focusing energy in the user direction;

Smarter devices: Taking advantage of the device capability of processing information;

Machine-to-machine communication: Supporting a massive number of devices connected to the

network, and allowing low data rate and very low latency applications.
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As mentioned above, one of the possible future technologies is so-called device-centric architectures.

The downlink-uplink paradigm between user and a base station in a mobile cell has necessarily to be

replaced by a more cooperative network approach. Smarter communication systems are emerging, such

as Cooperative multipoint (CoMP) or new more efficient relaying techniques, that will certainly increase

the connection throughput of links by exploiting high spectrally efficient transmissions. Advanced full-

duplex relaying techniques for multi-hop communication, but also for short-range communication, are

believed to asymptotically double the spectral efficiency in radio communication systems and wireless

networks, making it an attractive technology to achieve 5G demands.

The idea of re-using the same spectral band to transmit and receive information at the same time,

therefore operating in in-band full-duplex mode, theoretically doubles the link capacity when compared

with the half-duplex mode. As a consequence, the current telecommunication concepts of frequency-

division duplexing (FDD) and time-division duplexing (TDD) become obsolete, with the appearance of

this new idea of any-division duplexing (ADD) and eliminating the long-held paradigm of any type of

digital communication so far used. However, once frequency and time resources are used simultane-

ously, self-interference cancellation techniques have to be applied in order to isolate the desired signal

from the interfering one [9]. Another important aspect for 5G that full-duplex may solve is spectrum

management, by means of duplicating the available current spectrum (commonly known as spectrum

virtualization). The possibility to enable almost instantaneous retransmissions for network connections,

i.e., with no need to wait for a time slot or for the attribution of frequency bands, can also be viewed as

an advantage. Combining this new concept of in-band full-duplex with the state-of-the-art ideas coming

from physical layer network coding (PLNC) and large/massive multiple-input multiple-output (MIMO), the

performance of multi-hop networks may be drastically improved, allowing each relay to serve more and

more users with higher requirements.

This technology can actually be implemented in current wireless networks. The main target of full-

duplex technique is to enhance link capacity for future 5G, although there are some systems that would

benefit from it with some slight modifications. Table 1.1 shows some different applications of in-band

full-duplex to the industry beyond mobile communications and the process of technology implementation

and standard adoption in modern and forthcoming networks.

No standards modification: 5G Adoption: Beyond 5G Cellular:
Self backhaul for small cells In-band full-duplex for 5G Ad hoc mesh networks

Full-duplex microwave backhaul 5G spectrum virtualization Military radio jammers
Adaptive duplexers for mobiles Multi-channel Wi-Fi AP

Table 1.1: Full-duplex current and future possible applications (adapted from [9]).

1.3 Problem Statement

In this thesis, in-band full-duplex exchange of information under a MIMO and under a physical wire-

less network perspective is assessed. The main objective is to study and propose some techniques
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for in-band full-duplex systems, that take tools from current state-of-the-art technologies described in

Chapter 2. Self-interference mitigation methods, relaying techniques, physical layer networking and the

use of massive antennas are further studied and proposed to integrate in-band full-duplex systems. This

work focuses mainly on the theoretical side of telecommunications, always assuming transmissions in

the digital baseband domain. A simulation framework is then developed to evaluate and confirm the

performance of the proposed systems.

1.4 Key Innovations of this Thesis

The work developed during this thesis contains several contributions to the academic community. Mainly,

in Chapter 4, a relay model that operates in full-duplex mode is characterized, self-interference sup-

pression filters are studied for imperfect state information, and adaptive filtering for combating the self-

interference in frequency-selective channels is proposed. In Chapter 5, massive MIMO full-duplex re-

laying is introduced for slow and fast fading channels, where the relay and user optimal power allocation

that guarantees a certain communication quality is obtained. Finally, in Chapter 6, bidirectional commu-

nication through a relay is shown to be possible by using only one time slot, taking advantage of physical

layer coding. Further, the power distribution that maximizes the system throughput is also obtained.

The contributions of this work may be summarized by the already produced and ongoing papers:

• A research combining the in-band full-duplex transmission in a relay station with the use of a

massive number of antennas. A communication link is established between several pairs through

the relay system. This relay incorporates self-interference suppression filters, as well as detector

and precoder filters, whose performance is evaluated at the relay and at the destinations with BER

curves. Further, an optimization problem is solved that ensures a minimum quality link for the

pairs, while minimizing the total energy spent. Accepted, presented and published:

[10] João S. Lemos, Francisco Rosário, Francisco A. Monteiro, João Xavier, and António Ro-

drigues. ”Massive MIMO Full-Duplex Relaying with Optimal Power Allocation for Independent

Multipairs”. In IEEE 16th Workshop on Signal Processing Advances in Wireless Communica-

tions (SPAWC), pages 306–310, Stockholm, Sweden, July 2015.

• The use of adaptive filters, namely the Recursive Least Squares (RLS) algorithm, is proposed in

order to effectively cancel the power of the residual self-interference terms. This filter is derived

for MIMO frequency-selective channels with OFDM transmissions. The filter performance is then

evaluated by its convergence time and by the BER at the relay. Accepted for publication:

[11] João S. Lemos, Francisco A. Monteiro, Ivo Sousa, and António Rodrigues. ”Full-Duplex Re-

laying in MIMO-OFDM Frequency-Selective Channels with Optimal Adaptive Filtering”. Ac-

cepted in IEEE 3rd Global Conference on Signal and Information Processing (GlobalSIP),

Orlando, FL, USA, December 2015.
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• A paper where in-band full-duplex is combined with PLNC, allowing the bidirectional exchange

of information through a relay in only one time slot. This proposed system is further evaluated

and its sum rate derived. Based on that, an algorithm to achieve the maximum possible sum

rate is proposed, by setting different powers to the terminals and to the relay. In preparation for

submission:

[12] João S. Lemos, Francisco A. Monteiro, João Xavier and António Rodrigues. ”Sum Rate

Maximization for Full-Duplex Bidirectional Relaying with Physical Layer Network Coding”. In

preparation for submission, 2015.

• The orthogonal properties of massive MIMO relaying are combined with PLNC, allowing an in-

crease in the amount of information exchanged and also canceling the inherent interference in

these systems. Lattice Network Coding is used for such effect, where it is shown how the in-

crease in the number of relay antennas affects the proposed system performance. In preparation

for submission:

[13] João S. Lemos, Francisco A. Monteiro, and António Rodrigues. ”On the Massive MIMO Effect

in Practical Physical Layer Network Coding Systems”. In preparation for submission, 2015.

1.5 Outline

This document reflects the work done in this Master’s project and is presented to obtain the Master of

Science degree in Electrical and Computer Engineering. Therefore, the document organization is as

follows:

Chapter 2 presents an overview of the state-of-the-art papers published in the last five years and

builds a theoretical foundation upon which the research work is based;

Chapter 3 contains the concepts of spatial-time communication, commonly known as MIMO, that

form the preliminary knowledge required to understand the full-duplex proposed systems;

Chapter 4 describes the problem of in-band full-duplex relaying and proposes new approaches to

improve this technique, using spatial filtering suppression and feedback adaptive cancellation;

Chapter 5 exploits the properties of massive MIMO transmissions in order to increase the level of

self-interference suppression at a relay station;

Chapter 6 proposes a new network approach to communication that combines PLNC and in-band

full-duplex transmissions to reduce the number of channel uses for exchange of information. The effect

of massive MIMO is also explored;

Chapter 7 briefly refers to and comments on the results obtained in this Master’s thesis and suggests

possible future research headings within the topic here discussed.
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Chapter 2

In-Band Full-Duplex in Context

The main idea of in-band full-duplex architectures is to use the same time and spectral resources to ex-

change information. Contrary to current systems that operate in half-duplex mode (unidirectional com-

munication) or in out-of-band full-duplex mode (time or frequency division multiple access schemes),

this novel approach enables a terminal to operate simultaneously over the same frequency band, dou-

bling the spectral efficiency of a system. When doing so, the problem of self-interference arises. Self-

interference consists of a perturbation of the transmitted signal caused at the receiving antenna of the

same terminal. Thus, a terminal can cause interference to itself when transmitting a signal in the same

frequency band of the signal it is also trying to listen to. Take a femto-cell of a mobile system as an

example: the power difference between these two signals is about 40 dB, while the receiver noise floor

is around −100 dBm. Imagine that a 0 dBm power signal is transmitted. The received power at a 15

cm away antenna is about −40 dBm, hence if 60 dB of self-interference is removed, the signal is theo-

retically decodable. Furthermore, it is intuitive that once a transmitted signal is perfectly known at the

transmitter, the self-interference can be totally suppressed. However, several non-linearities in the radio

frequency (RF) chain and errors in the channel estimations may severely harm the filtering processes.

Note that this value is quite high and therefore the problem is not trivial [14, 15]. For those reasons, not

so many years ago, the telecommunication community thought that radio equipment could not receive

and transmit on the same frequency band. However, the demand for faster data link streams and for

reduced spectrum allocation encouraged the study of in-band full-duplex communication in the last 4-5

years, which makes it a novel idea with a huge potential to integrate future technologies. As it will be

shown further, in order to suppress 60 dB of self-interference, in-band full-duplex needs to cover a broad

research area, involving telecommunications fields such as antenna theory, propagation modeling, radio

frequency circuits, information theory, analogue signal processing, digital signal processing, networking,

etc [16].

Usually, the process of canceling the self-interference is divided into three different stages or do-

mains. Firstly, in terms of wireless propagation, there is the possibility of combining techniques such as

antenna directionality, cross-polarization or transmit beamforming. In this case, the desired signal may

also be affected by these methods, which motivates the introduction of analog circuit domain techniques.
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The latter consists of subtracting a copy of the transmitted signal from the received one, adjusted with a

proper gain, phase and delay, usually performed by RF circuits. Although the applications of the men-

tioned methods can achieve the required power-to-interference-plus-noise level to reliably communicate

in test sets [14], when taking into account real environment effects it is usually not enough. In order

to deal with the channel variations in such scenarios, digital domain filters are employed, allowing a

necessary heavy signal processing. Moreover, this domain allows the use of techniques such as op-

timal power allocation, adaptive filtering, adaptive beamforming, etc., to further improve the mitigation

of self-interference. Thus, an in-band full-duplex terminal needs to incorporate the processing stages

represented in Fig. 2.1.
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Figure 2.1: Block representation of a possible in-band full-duplex terminal with the three mentioned
domains for self-interference mitigation detailed.

In this chapter an overview is given of the in-band full-duplex systems developed in the last 4 years,

especially in academic work, as well as the engineering fields needed to design such systems [17].

The research challenges within the topic explored in this thesis are also presented. Moreover, the

contextualization of this work within the topic area is carried out.

2.1 Propagation Domain

The first approach to mitigate self-interference was based solely on propagation properties of electro-

magnetic waves. The need to connect terminals that are too far to establish reliable communication

brought about the idea of using relay stations. In order to increase the coverage of networks, relays

can operate within the same bandwidth and act as passive amplifiers by receiving and retransmitting

an amplified version of the desired signal, known in literature as amplify-and-forward (AF). Therefore,
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wireless propagation insulation techniques were developed, aiming for separation of the receiving side

from the transmitting side of the terminal. This procedure consists of the first stage of self-interference

suppression, and it is essential to reduce the signal power so that its range fits in the downstream re-

ceiver hardware RF band. There are two different schemes of propagation techniques, based on the

design of antennas, as Fig 2.2 shows.

Desired signal

Tx

Rx Reflected path

Direct 
path Nearby

Scatters

Transmitted signal

(a) Separated-antenna design.

Transmitted signalTx

Rx

Reflected pathCirculator

Nearby
Scatters

Desired signal

(b) Shared-antenna design.

Figure 2.2: Different possibilities to mitigate self-interference using wave propagation properties.

The first, separated-antenna design, consists of using different antennas to transmit and receive, as

shown in Fig. 2.2(a). Using this procedure, it is then possible to suppress interference by path loss

attenuation, increasing the antennas distance to further increase the attenuation or by placing absorp-

tive material between them [18, 19, 20, 21]. However, this approach is limited by the terminal design

that today plays a serious and important part in commercial products. Cross-polarization solutions are

also interesting possibilities to insulate antennas and enhance the interference suppression [19, 21],

for example, by transmitting in vertical polarization and by receiving in horizontal polarization. Another

possibility is to exploit the antenna radiation pattern, carefully placing the receive antennas in radiation

null points of the transmit antenna array [19, 22, 23]. The second one, shared-antenna design, in Fig.

2.2(b), consists of using the same antenna to transmit and receive. This is possible by means of a circu-

lator, a circuit that routes the signals from the transmit chain to the antenna and from the antenna to the

receive chain [24, 25]. In the case of a relay station, it is common to place antennas back-to-back, i.e.,

arraying antennas together that connect each relay end. Furthermore one can apply techniques such as

wavetraps [26], which extend the relay isolation by connecting short circuit resonant transmission lines,

such as band-gap structures [27]. These materials have high surface impedance and for that reason
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attenuate the wave propagation. Also, one may use slots on the ground plane [28], which consist of in-

ternal dual band diversity antennas with dual frequency notched resonators to enhance electromagnetic

attenuation.

The problem of both of the designs described above is sensitivity to environment conditions. For a

rich scattering channel, the self-interference is composed of multiple copies of the transmitted signal,

which may vary rapidly in time. It is possible that the desired signal is also deteriorated by applying these

propagation methods, since they are blind to the carried information, i.e., the desired signal may also

be attenuated by the propagation methods along with the self-interference component. Therefore, it is

necessary to track these variations in the channels as described in the following sections.

2.2 Analog Radio Circuits

Analog circuit mitigation techniques are performed to increase attenuation on the self-interference signal

and used as the second suppression stage of in-band full-duplex architectures. These circuits are placed

before the analog-to-digital converter (ADC) and act either over the baseband or broadband analog

received signal. The main idea is to track the propagation effect of the interfering signal and by means

of electronic processing in the analog domain subtract it from the received signal. Moreover, it is also

possible to tap the transmitted signal in the digital domain, apply the interference channel effect by

means of gain and phase adjustment, and convert it back to the analog domain so that one can subtract

it from the received signal [15, 18].

As in the propagation domain, some analog circuits are not able to track channel variations in mul-

tiple scatter conditions. These so called channel-unaware circuits are focused only on suppressing the

interference direct path [15, 18, 19]. However, analog processing development has brought channel-

aware circuits, that are capable of tracking channel variations and, therefore, more effectively cancel

self-interference [23, 24]. Both consist of a delay tapped line with amplitude and phase correction. For

the first case, the circuit is calibrated once and before its operation stage. For the second case, it is

possible to continuously adjust those values in order to track channel variations.

As is known from the literature, cellular channels are commonly frequency-selective, due to multipath

received copies of the desired signal at the receiver. For most current systems, it is essential to have this

channel property in order to exploit spatial diversity, for example. Thus, analog circuits, even if channel-

aware, cannot completely cancel out the self-interference multipath components. For that reason, a

stage of digital signal processing is used so that the remaining self-interference, usually referred to as

residual component, is further suppressed, thus, allowing reliable in-band full-duplex communication.

2.3 Digital Signal Processing

Digital signal processing techniques cancel out the self-interference by applying complex and heavy

signal processing, in the digital domain (after the system ADC). As they work in the digital domain, so-

phisticated filtering techniques are applied without great effort (especially with the recent appearance
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of powerful digital signal processing boards). However, this stage is only possible if the other two de-

scribed above are successfully implemented, since the ADC dynamic range may limit the amount of

interference allowed [29]. In literature, it is usually said that digital signal processing is done over the

residual self-interference and acts as fine signal filtering.

Unlike its propagation and analog counterpart, there is not a standard set of techniques used in digital

domain. This research field is developing in a grate pace, and a considerable amount of papers have

been published in recent years proposing new perspectives and ways of dealing with the interference

problem. The most important in this stage is to model the channel chain from the transmitter digital-to-

analog converter (DAC) to the receiver ADC, so that filtering is effectively applied. It is then possible to

perform beamforming [30], optimal power gain control and allocation, antenna selection [29, 31, 32, 33],

null-space projections and minimum mean square error (MMSE) filters [34], joint decoding [33], etc.

2.4 State-of-the-Art Systems

In this section, fully operational in-band full-duplex systems are presented, as well as already simulated

and published methods to achieve full-duplex communication, mainly through a relay station. The pur-

pose is to briefly show state-of-the-art implementations of in-band full-duplex systems, some of them

further explored in the work presented, and also to contextualize this thesis among the academic work

previously presented.

2.4.1 Radio Terminals

During the last few years, several in-band full-duplex terminals have been developed in academia, mainly

at Stanford University and Rice University. These research groups were primarily focused on the real

system implementation, rather than studying digital signal processing techniques. Some of their work

consists of important characterization and modeling of the interference, and is detailed bellow.

One of the first methods proposed to reduce self-interference is to use antenna separation along with

analog circuit interference cancellation and some digital signal processing. Melissa Duarte and Ashutosh

Sabharwal, from Rice University, showed theoretically that full-duplex systems with these characteristics

are possible to implement with off-the-shelf radios and can overcome the rates achieved by half-duplex

systems [18]. They also focused on characterizing the wireless full-duplex system with antenna analog

cancellation and digital cancellation [15], as well as studying propagation techniques to further reduce

self-interference as directional diversity [22]. Most of the work to characterize and implement operational

full-duplex systems came from Melissa Duarte’s PhD work at Rice University [35].

The research group from Stanford University published their first paper in 2010 [23]. They imple-

mented an antenna cancellation scheme, consisting of a combination of proper antenna placing (in

the propagation domain) followed by interference cancellation in the analog domain and digital interfer-

ence cancellation. Two transmitting antennas separated from one receiving antenna by half wavelength

are proposed, so that they interfere destructively making the receiving antenna hear a weaker inter-
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ference (exploiting the phase offset). However, this method may have problems related to bandwidth

constraints, since it creates a frequency-selective channel (perfect cancellation is only achieved at the

carrier frequency) and with far distance power distribution, by perturbing the antenna radiation pattern.

Notwithstanding, the paper argues that combining this with analog interference cancellation and digital

interference cancellation can make in-band full-duplex possible. In another work [36], it is argued that

using a N × N MIMO system can theoretically increase by N the system throughput (by MIMO single

valued decomposition precoding), whereas the use of full-duplex just duplicates it, and therefore the

obtained gain using full-duplex may be fallacious. The use of a balun (balance-unbalance, similar to a

ciculator) circuit in the propagation domain is then proposed, which makes it possible to use the same

antenna for transmitting and receiving. This component creates a perfect inverted copy of the transmit

signal that is then subtracted (signal inversion), providing an additional 40-50 dB attenuation. A digital

interference cancellation using channel estimation is afterwards applied to remove the residual and re-

maining self-interference. However, this approach requires delay lines with high resolution and a strong

attenuation after the balun circuit, which cannot be implemented in practice with the required quality.

Very recently, an in-band full-duplex system for Wi-Fi radios was presented by a Stanford University

research group [24]. The same antenna is used both to transmit and receive in this proposal, equipped

with a circulator circuit. They likewise propose novel self-interference circuits and algorithms that achieve

the 100 dB required attenuation on Wi-Fi standard. Firstly, an analog cancellation circuit based on

parallel fixed lines of varying delays recreates the channel effect and gives a 60 dB attenuation on the

self-interference signal. Secondly, a digital cancellation processing is used to clean out the remaining

interference. The signal linear component is estimated with a maximum likelihood (ML) method, giving

an extra 50 dB attenuation, which is followed by a non-linear residual component estimate. This paper

represents an important cornerstone on full-duplex radio systems, although the radios used are still

too large to incorporate current practical terminals. It is worth mentioning that some members of this

Stanford research group created a startup in full-duplex radio solutions (url: http://kumunetworks.com),

which was fully operational at the date this thesis was written.

2.4.2 Communication via Relay Stations

A promising area for future networks is the use of wireless relay stations in order to suppress shadowing

effect, broadening network coverage and enhancing its maximum throughput, especially for future long-

range millimeter wave communication [2]. Considering radio networks are increasing exponentially,

relays may be used to shorten distances between users. Originally, relays were considered to operate

in half-duplex mode, using two different channel resources for transmission and reception. This mode

incurs a spectral inefficiency, since it uses two channel resources for exchanging the same message. For

that reason, in-band full-duplex relays have been studied in recent years, so that spectral efficiency may

be increased. Of course, self-interference mitigation techniques described above need to be applied

so that the loopback interference is mitigated at the relay. Fig. 2.3 shows an in-band full-duplex relay

serving in a two-hop communication between several sources and destinations.
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Figure 2.3: Full-duplex relay station representation with the self-interference problem highlighted.

The capacity trade-off in this approach was for the first time studied by Taneli Riihonen, Stefan

Werner, and Risto Wichman [37], from Aalto and Tampere Universities, who were mainly focused on

the signal processing and assumed a certain attenuation for the propagation and analog domain. They

first propose an AF method (also with a relay gain control scheme [38]) within only the propagation

domain and state that it is better to allow some degradation of the signal-to-noise ratio (SNR) using in-

band full-duplex rather than to have the spectral inefficiency of the half-duplex mode. In [39], the same

authors present a paper based on MIMO transmission links with loopback interference suppression

decode-and-forward (DF) scheme, which means that the relay fully regenerates the digital signal. They

assume channel state information (CSI) at the relay and use a zero forcing (ZF) approach, called null-

space projection (NSP), or an MMSE estimation to filter the input and output of the relay. However, the

channel erroneous estimations and the deviation of the transmitted signal from the original, caused by

RF impairments, may give rise to errors that rapidly deteriorate its performance. Also, one can take into

account the ratio between the useful signal power and the self-interference power when designing the

filter and try to maximize it at the relay reception and transmission as in [40]. The optimal relay input

and output filter may be chosen based on the direction of the interference signal but also based on the

useful signal, by numerical optimization. The performance of this method is shown to slightly improve

the one in [39].

A comparison between the advantages of using in-band full-duplex transmissions and half-duplex

transmissions is described in [41]. The analysis is with respect to both instantaneous and long-term

achievable rate by each mode, considering any relay protocol and any self-interference cancellation

scheme. The authors derive the achievable rate expressions for the full-duplex AF and DF modes, half-

duplex mode, and direct transmission, employing the optimal relay transmission power that maximizes

each mode capacity. Then, a hybrid relay that selects the mode with higher capacity is introduced, by

showing a threshold in terms of signal-to-interference-plus-noise ratio (SINR) to switch between them,

and, therefore, mitigate the interference effect in the overall relaying system.

In [34], more advanced suppression techniques are explored. The authors use basic RF techniques

such as antenna separation and analog cancellation combined with spatial suppression schemes (taking

advantage of the MIMO extra degrees of freedom). Independent, separated and joint filter design are

13



proposed by the authors. Antenna selection for complex fading channels is presented as a generalized

antenna subset selection for the binary channel. Then, it is further developed to eigenbeam selection

based on the singular value decomposition. This method generally suffers from residual loopback inter-

ference even if there are no channel state estimation errors. Null-space suppression is presented as a

method that can completely eliminate loopback interference when perfect CSI is considered and there

are sufficient dimensions, i.e., there are enough antennas to project the interference. Therefore, filter

design is accomplished such that a relay may transmit and receive in different subspaces. A MMSE

filter is likewise proposed in order to minimize the distortion and attenuate the loopback interference,

while preserving the desired signal path through the relay. Finally, a combination between interference

cancellation and spatial suppression is presented. However, the main drawback of these schemes is

that they are very sensitive to estimation errors in the loopback MIMO channel, which is considered as

residual interference and treated as an additive perturbation. When channel estimations become large,

the performance of the system deteriorates quickly with the interference power.

The relay transmit power is optimized in [42], with respect to the end-to-end (e2e) system sum rate.

The authors assume that a beamforming filter for interference suppression is applied and show that

under peak power constraints there is an optimal relay transmit power. This method allows to point the

residual interference in the direction of the least ”harmful” dimension. Moreover, they deduce the relay

optimal power closed form expression for the single-input single-output (SISO) case and compare the

results with the half-duplex counterpart.

Another different approach is to use time-domain cancellation instead of filtering suppression, since it

requires less degrees of freedom. Time-domain cancellation subtracts an estimation of the interference

from the receive signal, while suppression, as already stated, takes advantage of MIMO systems to

perform filtering and ensures orthogonality between the desired signal and interference. In [43], these

two methods are compared. The authors evaluate a bidirectional stream of communication when null-

space projection is performed and when time-domain cancellation with the same degrees of freedom is

used. The methods are compared based on the achievable rates, and they conclude that time-domain

cancellation may have better achievable rate regions for the channel model used. Also, they observe

that antenna imbalance, i.e., having more antennas to transmit than receive or vice-versa, can improve

suppression methods. More recently, other approaches have been published as in [44]. The authors

propose an adaptive filter, based on a gradient descent algorithm to mitigate the self-interference in a DF

single frequency relay. The system also uses linear beamforming to forward the symbols from one end to

another. By applying the feedback adaptive filter, the authors show perfect self-interference cancellation

under certain filter conditions, even when imperfect channel estimations are assumed. Moreover, it is

also proved by Lyapunov function analysis that the proposed algorithm converges independently from

the initial point if a proper step size is chosen.

In [45], the authors explore an advanced combination of propagation, analog and digital domain

cancellation techniques for a in-band full-duplex relay station, where real implementation system spec-

ifications are taken into consideration. They propose the design of loops on the ground plane, based

on near-field wave simulation via finite elements theory. The idea is to create electromagnetic fields
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that help to cancel the waves transmitted by the relay. They also propose a non-linear self-interference

cancellation method, arguing that linear filters may distort the signal introducing non-linearities and de-

teriorating the full-duplex system performance. The non-linearities are modelled by polynomials, where

each coefficient is estimated with a linear least square method.

2.5 Researched Areas

Finally, state-of-the-art work on the areas of investigation that were incorporated in the study and devel-

opment of interference mitigation schemes are briefly addressed.

2.5.1 Large/Massive MIMO

A recent emerging approach to further mitigate the interference present in a communication system,

mainly in an in-band full-duplex relay station, is to employ large/massive arrays. Massive MIMO is

considered to be an emerging technology that can upscale the attractiveness of MIMO, reducing noise,

fading and interference, therefore enhancing the average system throughput. The theory of MIMO has

provided new breakthrough performances in transmit beamforming, spatial multiplexing, space division

multiple access and interference alignment, being present today in several cellular standards. The

Massive MIMO transmission techniques are expected to further improve these performances in future

wireless networks [46, 47].

Therefore, focusing on the interference alignment and cancellation provided by large antenna array

systems, the study of the achievable performance in such systems has recently been conducted. In [48],

the capacity of a relay station employing massive antennas that serve several multipairs is analyzed .

The authors show that, by assuming an infinite number of antennas available at the relay, the interference

between users can be made negligible when performing ZF or maximum-ratio combining/maximum

ratio transmission (MRC/MRT) equalization, thus, attaining the capacity limit associated with the system

there evaluated. In [49], the same system is considered, where different power-scaling schemes are

employed to evaluated the limits and benefits of interference suppression. In [50], the spectral efficiency

and power-scaling laws are derived when in presence of imperfect CSI, where simulation results are in

accord with the theoretical results.

There is also the possibility of employing massive MIMO arrays in order to cope with the self-

interference present in in-band full-duplex terminals. The orthogonality property present in large scale

channels allows a better level of mitigation in the self-interference component. In [51], it is proven that

massive MIMO renders more resilience in terms of inter-pair interference (ISI), while also mitigation the

self-interference effect. The authors proposed a ZF precoding and an extended regularized channel

inversion that is proven to exploit and combine the advantages of massive MIMO systems and in-band

full-duplex transmissions. In [43], a study of full-duplex terminals with large dimensions employing sup-

pression techniques and cancellation techniques is carried out. The number of antennas required to

cancel the interference in the terminal is compared against the estimation level error in the channel
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self-interference matrix, while the authors deduce the achievable rates in such scenarios.

Combining massive MIMO with in-band full-duplex relay station may provide outstanding results. In

[31], a multipair DF full-duplex relay that combines massive antenna array techniques is presented to

mitigate the self-interference borne by the relay. Those authors propose a method where the relay station

receives pilots to estimate the loopback channel and then processes the signal using ZF or MRC/MRT

detection and precoding. The multipair users are seen as a distributed multiple-input transmitting to the

multiple-output relay. Thus, a linear ZF or MRC detection algorithm decodes the received signal. Since

linear decoders can perform as well as non-linear ones with large arrays [52], the outgoing signal is

precoded with a corresponding ZF or MRT, and forwarded. When the relay input and output antennas

tend to infinity, the authors show that the loopback interference becomes orthogonal with the desired

signal, perfectly canceling its undesired effect. Moreover, an optimization of the power allocation is

developed, where the system energy efficiency (EE) is maximized, only subject to a given spectral

efficiency and peak power. Nevertheless, their results assume perfect CSI for the large-scale fading

components of the channels, and for that reason interference will always be present, albeit, with a low

power component.

2.5.2 Physical Layer Network Coding

The interference in wireless networks is considered a central problem, due to the natural properties

of the wireless medium, and is always avoided when possible to allow proper communication of all

nodes in the network. This issue is considered to be a major challenge in multi-user cellular networks.

Therefore, simultaneous transmissions are treated carefully, so that the interference between users is

strictly avoided. This procedure of regarding interference as an harmful effect has been contributing

to the limitation of the capacity of commercial networks. Mainly, the allocation of resources available,

for example at a base station, is distributed among the users, guaranteeing that interference is brought

to zero. Wireless networks usually employ scheduling algorithms of time and frequency resources to

achieve the aforementioned goal. However, with a proper understanding of the characteristics of the

interference, these resources may be more efficiently used, thus, enlarging the amount of information

exchanged in wireless networks. For that reason, interference may be seen as nothing more than the

superposition or sum of delayed and attenuated versions of the user’s transmitted signals. Thus, this

perceptive seeks to decode the interference, rather then avoid it.

The concept of physical layer network coding (PLNC) is among such techniques. This novel away

of processing interference was inspired by the principle of network coding [53] along with the additive

properties of wireless channels. The idea is that functions of user’s messages are propagated in the

intermediate nodes of the network, instead of the messages themselves. As mentioned, PLNC takes

this procedure to the physical layer, i.e., it used the channel itself to help perform a linear combination

of messages that are then broadcast. With a sufficient number of these combinations of messages, it

is possible to obtain back all the messages and reuse the previous resources to avoid interference, en-

hancing the capacity of networks. The conceptualization of PLNC seems to be developed independently

16



by some research groups: Zhang, Liew and Lam [54]; Popovski and Yomo [55]; and Nazer and Gatspar

[56]. Since the beginning of wireless networks, interference from users that transmit at the same time

has been avoided or reduced. PLNC proposes a revolutionary method: interference can actually improve

average throughput of a channel if treated properly [57]. By doing so, it is assumed that a relay node

must somehow understand its output signals and the receivers should be able to isolate the information

addressed to it. Thus, the concept of PLNC relies on a physical level modulation/demodulation tech-

niques at the relay that allows the interference to enhance the system performance. The implementation

of PLNC relies on a network code, which is specified by a codeword length and a defined sum operation

over the same code. As it is designed for a physical level, a one-to-one modulation mapping should map

the information in the available codewords to symbols that are then transmitted to the channel. This

transmitted information then arrives at some intermediate node summed with the information from other

nodes. Since these intermediate nodes are usually assumed to employ some non-linear detection, a

many-to-one demodulation mapping is performed, such that the transmitted information is decoded. For

example, consider the simplest case of two-way relay channel (TWRC), where most research has been

done [58]. Consider also four codewords are used, which are pulse amplitude modulated with the set

{−3,−1, 1, 3}. To correctly decode information in an additive white Gaussian noise channel (AWGN), a

demodulation mapping for the set {−6,−4,−2, 0, 2, 4, 6} would be necessary to estimate some function

of the transmitted data (for example the binary XOR function, û = f(w1 ⊕ w2 ⊕ e)). This procedure

would reduce the number of time slots used for bidirectional information flow from 4 to 2. In the first time

slot (the multiple access phase), both ends transmit simultaneously, providing the relay with a noisy ver-

sion of each codeword. In the second time slot (the broadcast phase), the relay broadcasts the decoded

information to the ends, that can then extract their desired information. Due to its simplicity, PLNC has

received enormous attention since 2010. A large number of strategies for PLNC have been proposed,

especially for the TWRC, that are described in the following paragraphs.

As described in section 2.4.1, the most basic idea is to forward the information that arrives at a relay

by only applying a gain. This procedure is known as analog network coding (ANC) and is the most basic

form of PLNC. The relay acts as a passive element, while the end nodes use the knowledge of their

own messages to decode the desired information. This idea was firstly implemented in [59], and further

studied in [60, 61, 62]. However, the amount of noise introduced in intermediate nodes of a network

limits the performance of such systems, even when channel coding is employed. Therefore, the DF

strategy is resorted to enhance the performance of those systems. In this case, the intermediate nodes

decode each codeword of the transmitted nodes and perform a linear function that is forwarded through

the network. This idea is proposed in [55, 63, 64], where the bitwise XOR function is used to forward

information with typical pulse amplitude modulation (PAM) as the physical mapping. In those works it is

shown that under high SINR it is possible to approach the channel capacity. Nevertheless, this proce-

dure involves the detection of each individual received codeword, which is not necessary since only a

function of them is forwarded to the network. Therefore, the concept of denoise-and-forward (DeF) has

appeared. This idea is based on a many-to-one map that directly maps the received information to the

desired function to be forward. For example, in a TWRC the received symbols are directly mapped to a

17



constellation that is formed based on the combination of the transmitted constellations. This constella-

tion is isomorphic to the network linear code and, thus, the network code is embedded into the symbols

of the constructed constellation. In [65, 66] the authors study the performance of this scheme. Firstly, a

generalized XOR function is used and also a non-conventional quadrature amplitude modulation (QAM),

in order to optimize the information flow. Spatial diversity techniques are used to enhance the system

performance. Moreover, a comparison between the linear function XOR and the addition over the finites

function is compared based on the symbol and bit error rate (BER) for different PAM schemes. Fur-

thermore, these works present per-symbol coding instead of per-message coding. In order to enhance

the performance of TWRC with per-message coding and to generalize it to multi-user networks, a new

concept was introduced, as follows.

The concept of compute-and-forward (CP) was initially proposed by Nazer and Gastpar in [67]. The

TWRC is generalized to a Gaussian multiple access channel (MAC) where each node transmits a symbol

from a multi-dimension lattice. The idea is to explore the group property that any integer combination of

a lattice point is always a point of that lattice. Therefore, the intermediate nodes try to create a network

code that approximates the received information to a integer combination of points in the used lattice.

The performance of CP is based on the effective noise, which is created due to the difference between

the integer code and the real or complex nature of the channel. Nazer and Gastpar have shown that the

computation rate of this protocol for one-hop networks gets very close to the Shanon channel capacity

[68], when there exists an infinite sequence of ”good” lattice codes, described in [69]. The idea of CP

is exemplified in Fig. 6.3 for the TWRC. Firstly, each node maps its message onto a point in the lattice

code and sends it through the channel. The lattice code is constructed based on the intersection of

a fine lattice fundamental region with a coarse lattice. This called nested lattices codes are usually

generated from channel correction codes, as convolutional codes or low-density parity-check codes

(LDPC) [70, 71]. Then, the intermediate node receives the sum of the signals and quantizes it onto the

fine lattice to obtain an approximation of the sum of messages, which is forwarded through the network

or back to the nodes.

The CP can also be extended to MIMO, where each node of the network may employ more than one

antenna, as in [72]. Significant performance gains in the rate analysis by the use of multiple antennas are

shown. Also, it is possible to improve the performance of CP by resorting to well-established methods in

wireless communication, such as successive decoding of information [73].

The step forward in terms of communications is to combine PLNC with in-band full-duplex transmis-

sions. As already mentioned, initially the exchange of information in a TWRC was done in four time

slots. Network coding reduced this number to only three slots. The physical network coding further

improved the exchange of information to two time slots. By incorporating the techniques of full-duplex

communication and PLNC, only one time slot may be used for bidirectional relaying streams of informa-

tion. This could be the major step towards finding solutions to meet the requirements of future networks.

Few works on combining in-band full-duplex and PLNC have been presented. Gan Zheng has proposed

a system for the TWRC [74], where the relay and the users have multiple antennas. An ANC to forward

information with a ZF constrain at the relay is proposed there, in order to attenuate the problem of self-
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Figure 2.4: Compute-and-forward transmission over a nested lattice code for the two-way relay channel
(figure adapted from [57]).

interference. Moreover, the author presents power control to optimize the system rates. Semiha Tedik

and Gunes Karabulut Kurt have presented a system that utilizes DF relaying based on ML estimation of

the XOR function for binary pulse shift keying (BPSK) [75]. The self-interference from full-duplex trans-

missions at the nodes and at the relay are canceled with antenna separation at a propagation level and

with time-domain cancellation at a digital level.

2.6 Thesis Contextualization

As demonstrated above, in order to establish reliable full-duplex communication, it is necessary to ad-

dress a broad domain of communication theory and engineering concepts. The combination of RF

circuits, system design, digital signal processing, relaying and networking is needed so that fully in-band

full-duplex systems may be a reality in the future of wireless communications. All the above-mentioned

areas are in major development and several problems are still to be solved. This thesis focuses on the

digital signal processing domain for in-band full-duplex relaying in symbol coded networks. The main

objective of this work is to propose and study some in-band full-duplex systems that use state-of-the-art

improved techniques and employ methods from the mentioned recent signal processing areas.
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Chapter 3

MIMO Communications

For discussion of the in-band full-duplex problem it is essential to understand multiple-input multiple-

output (MIMO) communications, a field that has been well developed in the last 15 years. Thus, the

MIMO theory is briefly explained in this chapter. This study is based on some of the most influential

textbooks on the topic [76, 77, 78, 79, 80, 81]. Most of the studied and implemented techniques in this

chapter are further employed in the implementation and simulation of in-band full-duplex relay systems

in the chapters that follow.

3.1 MIMO Concept

MIMO transmissions have provided the tools to design faster and more reliable systems for wireless

communications networks. The idea is to exploit the space diversity introduced by using multiple an-

tennas, in order to increase user capacity. Using a MIMO channel for communication provides several

data streams sent simultaneously, called spatial multiplexing, where information is beamformed to serve

different users. The key concept is to take advantage of the multiple scattered uncorrelated signals that

arrive via different paths at the receiver to extract the information under transmission.

3.1.1 MIMO Channel

The MIMO channel is almost always modelled as a narrowband channel where the channel coefficients

are complex scalars. MT antennas transmit a symbol at each time slot n to MR receive antennas as

shown in Fig. 3.1.

Each stream from the transmit antenna i to the receive antenna j experiences a complex channel

coefficient hji(n). Therefore, the received signal at the receive antenna j is given by a sum of sent

symbols multiplied by the correspondent channel, yj(k) =
∑MT

i=1 hji(n)xi(n) + nj(n), where xi(n), yi(n)

are random processes and nj(n) is a zero mean complex circular symmetric (ZMCCS) Gaussian random
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Figure 3.1: MIMO Channel.

variable with zero mean and σ2
n variance (for n ∈ N). By defining the vectors

x(n) = [x1(n), ..., xMT
(n)]T ,

y(n) = [y1(n), ..., yMR
(n)]T ,

n(n) = [n1(n), ..., nMR
(n)]T ,

(3.1)

it is then possible to create a representation for the MIMO channel with the channel matrix H(n), usually

used in the literature, with entries given by

H(n) =


h11(n) · · · h1MT

(n)
...

. . .
...

hMR1(n) · · · hMRMT
(n)

 , (3.2)

and, therefore, the time-discrete MIMO input-output relation is as follows

y(n) = H(n)x(n) + n(n) (3.3)

The coefficients in matrix H can be either known (time-invariant channel), remain constant over many

block transmissions (slow fading channel) or change several times over a transmission block (fast fading

channel). The knowledge of the channel coefficients is usually called channel state information (CSI),

and may be instantaneous if the transmitter and/or the receiver knows its value. Also, it is common

that the system only knows an erroneous estimation of the MIMO matrix, usually denoted as imperfect

channel estimation. When designing and testing MIMO systems, another possibility is to assume that

only the channel distribution is known. Nevertheless, the CSI is estimated using pilot sequences, with

traditional estimators, studied in deep in the last 20 years, but adapted to the MIMO case. At the limit,

each hji(n) is estimated individually and feedback properties and channel reciprocity can be assumed

to obtain hij(n).
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3.1.2 MIMO Capacity

In order to understand the theoretically achievable capacity of a MIMO channel, it is more intuitive to

start by understanding the special cases of MIMO, as detailed in [77] and stated in table 3.1.

SISO SIMO MISO MIMO
MT = 1 = 1 > 1 > 1
MR = 1 > 1 = 1 > 1

Table 3.1: Special cases of MIMO.

Due to the purpose of this work, only the MIMO case is looked at, but the special cases of MIMO are

easily derived from the theory built for it in most cases. Therefore, consider the case where the channel

is time-invariant and there is full CSI (at both transmitter and receiver). It is possible to create a set of

independent parallel channels by singular value decomposition, where H = UΛVH . The matrix Λ is a

diagonal matrix containing the singular values of H and representing the gain of the parallel channels.

By a pre and postcoding, it is possible to derive an orthogonal equivalent channel, given by ỹ = Λx̃ + ñ,

where x̃ = VHx, ỹ = UHy and ñ = UHn. The scattered MIMO channel is by this process transformed

into min{MT ,MR} parallel channels. The capacity of this MIMO system then becomes the sum capacity

of each individual channel and is computed in bits/s/Hz as

CTIMIMO =

min{MR,MT }∑
k=1

log2

(
1 + POk γk

)
, (3.4)

where the optimal power POk is obtained by the water filling solution (optimization of the sum capacity

with a total power constraint [79]) and γk =
λ2
k

σ2
n

is the signal-to-noise ratio (SNR) of parallel channel k

(note that the transformation does not change the total system power).

Considering now the fast fading channel, H(n) becomes the realization of a fading channel process,

usually assumed to be stationary and ergodic. In this case, it is possible to adapt the transmission

to the distribution of the channel coefficients. The covariance matrix of transmitted signals Rxx =

E{xxH}, is taken into consideration, giving an achievable rate of log2 det(I+HRxxHH/σ2
n). The ergodic

capacity is therefore the average of the maximum achievable rate over the fading channels, assuming a

transmission peak power of P̄ for example, and given by equation (3.5)

CFFMIMO = max
Rxx s.t. tr(Rxx)≤P̄

E
{

log2 det
(
I +

1

σ2
n

HRxxHH
)}
. (3.5)

The most common example in the literature is to model the channel with the famous Rayleigh distribution,

where both real,R{hji(n)}, and imaginary, I{hji(n)}, part of hji(k) are drawn from a normal distribution.

In that case, Rxx = P̄
MT

I, where P̄ is the mean power of the transmitted sequence, and the rate in

equation (3.6) is obtained.

CFF,RayleighMIMO = E
{

log2 det
(
I +

P̄

MTσ2
n

HHH
)}
. (3.6)

Finally, the slow fading channel is analyzed. The channel realization spreads over a block of data that
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is much smaller than the channel coherence time. Thus, the channel matrix becomes approximately a

constant, H. In order to characterize this channel, the outage probability is introduced, since the channel

can be in deep fading during a block of code and for that reason there is no averaging effect, as in the

previous case. The outage probability is then defined as the amount of time the actual transmission rate

is under a certain predefined rate, R0 (chosen for a specific application for example), as in

pSFout(R0) = P{R ≤ R0}. (3.7)

In the case of slow fading Rayleigh channel, the outage probability is defined as in equation (3.8)

pSF,Rayleighout (R0) = P
{

log2 det
(
I +

P̄

MTσ2
n

HHH
)
< R0

}
. (3.8)

However, the log-normal distribution is often used to characterize channel slow fading effects. Moreover,

both fast and slow fading may be present in a real transmission.

3.1.3 MIMO Performance Gains

Two different indicators may be introduced in order to evaluate the gain of using space-time communi-

cation. These indicators are compared to the single link scenario.

The multiplexing gain is the number of independent streams transmitted simultaneously and given

by

lim
SNR→∞

C(SNR)/ log2(SNR),

where SNR = P̄ /σ2
n. For the fast fading channel in rich scattering conditions it is equal to min{MT ,MR}.

The diversity order is defined for fast fading channels as the increasing rate of the error probability

with the SNR, and is defined by

− lim
SNR→∞

log2 perror(SNR)/ log2(SNR),

where SNR = P̄ /σ2
n. It measures the number of resolvable paths over fast fading effect that the detector

can average out. Note that the diversity gain corresponds to the modulo of the slope of the BER curves

when plotted versus the SNR [81].

3.2 MIMO Detection Techniques

The previous section presented information theory based aspects of MIMO. The design and imple-

mentation of the transmitter and the receiver of a MIMO real system is here studied. These detec-

tion algorithms provide the background for implementing techniques that are able to suppress the self-

interference present in in-band full-duplex architectures. In the following, it is assumed that all detection

filters are followed by a symbol-wise quantizer, Q(·).
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3.2.1 Maximum Likelihood

The maximum likelihood (ML) detector, as in other schemes, consists on an exhaustive search over all

the possible symbol realizations. The objective is to choose the closest vector in the constellation of

possible points to the transmitted vector, as in equation (3.9).

sML = arg min
z∈C
‖ y −Hz ‖2, (3.9)

where C is the set of all possible input vectors. It can be shown that this detector is optimal, i.e., it gets

the maximum MR value for spacial diversity [78]. Nevertheless, the algorithm complexity is O(mMT ),

i.e., it increases exponentially with MT , and where the base m is the number of possible symbols (drawn

from a modulation with dimension size m).

3.2.2 Matched Filter

The matched filter (MF) is the most basic linear family detector (of the form x̂ = WHy). It is very simple

to implement, however, the MF is only optimal when parallel channels are present (diagonal H matrix).

The expression consists of basic channel equalization, which does not fully suppress the interference in

general (since usually hH
k hi 6= δ(i− k)).

sMF = HHy = HHHx + HHn. (3.10)

Equation (3.10) shows the filter output, which provides a SNR of

SNR(k) =
Pxk
‖ hk ‖2

(
∑
i 6=k ‖hH

k hi‖2/ ‖ hk ‖2) + σ2
n

,

and has a complexity of O(M2
TMR), which corresponds to the multiplication of the channel matrix [81].

3.2.3 Zero Forcing

The zero forcing (ZF) filter is designed in opposition to the MF, aiming to completely eliminate the

stream’s interference. The channel inverse H−1 is intuitively the solution, however it would require a

square H. Generalizing the filter expression, the Moore-Penrose pseudo-inverse is used and is given by

(HHH)−1HH . Although, if H is not full column rank, the ZF is not applicable since there is insufficient

streams to decode the number of transmitted symbols or, in a geometric perspective, there is no null

space to project each stream interference.

sZF = H†y = (HHH)−1HHy = x + (HHH)−1HHn. (3.11)

As can be seen in equation (3.11), the interference is suppressed (projection of the desired stream onto

the interference null space), but in this process the noise is not taken into consideration and, therefore,
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its power is enhanced. The signal-to-noise ratio in each stream is SNR(k) = Pxk
/σ2

n[(HHH)−1]kk, and

the complexity of the algorithm corresponds to O(min{MT ,MR}3) [78].

3.2.4 Minimum Mean Square Error

The minimum mean square error (MMSE) filter is introduced so that the average square error is mini-

mized, which also takes into consideration the noise power present in each data stream. The idea is to

solve minW E{(x−WHy)2} in order to derive the filter expression, which can be obtained as in (3.12) .

sMMSE = (HHH +
σ2
n

Px
I)−1HHHy. (3.12)

It is possible to deduce that the SNR(k) = Pxk
/σ2

n[(HHH +
σ2
n

Pxk
I)−1]kk and that the method has com-

plexity of the same order of the ZF filter [79].

3.2.5 Successive Interference Cancellation Receiver

Successive interference cancellation receivers are a family of MIMO detectors that decode one stream at

a time, firstly intruded in [82] as V-BLAST architecture (from Bell Labs). The main idea is to use iterative

decoding where only one stream is decoded at each step, while the rest is considered interference.

After having been decoded, the stream is then removed from the total received signal. This procedure is

successively done until there are no more streams to decode (detection layer-by-layer). Equation (3.13)

shows the procedure idea, where Lk stands for the kth received stream [81].

yLk
= hkxk +

MT∑
i=k+1

hixi + n;

yLk+1
= yLk

− hkx̂k.

(3.13)

At each layer detection, the stream can be decoded by employing a linear detector as described in

the previous sections. However, this method suffers from error propagation through its layers that can

perturb the overall performance. Thus, finding the optimal order for decoding that minimizes the bit error

rate (BER) becomes crucial, but at the same time unfeasible when the number of antennas increases.

Thus, ordered successive interference cancellation (OSIC) detectors are used when the streams are

decoded from the highest post-processing SNR to the lowest. This detector is close to optimal, i.e.,

approaches the full capacity for fast fading channels. The complexity of this detector has also the same

order of the ZF detector, i.e., it varies cubically with the number of antennas [83].

3.2.6 Lattice Reduction Aided

In the literature, the most comprehensive way of looking at MIMO detection makes use of the lattice the-

ory. The goal is to detect a vector with optimal performance, thus, achieving the maximum multiplexing

gain, and with reduced complexity that could be used in a real-time system. This new mathematical
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framework has provided the tools to further study MIMO systems and has created more advanced de-

tectors. The previous detectors briefly referred to in the previous sections can also be explained under

the lattice theory. In this and the next section two lattice based algorithms are presented.

Consequently, one can define a lattice as an infinite discrete subgroup of Rn

Λ =
{
y ∈ Rn : y =

MT∑
i=1

hixi, xi ∈ Z,hi ∈ Rn
}
. (3.14)

A lattice is then seen as an infinite set of points of integer combinations of the basis channel matrix H.

The fundamental region of a lattice is defined by F(H) = {Hx, 0 ≤ xi ≤ 1} (more detailed lattice theory

in [84]).

Lattice Reduction Aided methods are based on the idea that two basis matrices can generate the

same lattice, but they may have different fundamental regions (it may vary in area and vector’s orthogo-

nality). As shown in [85], using shorter vector bases that are close to orthogonal can effectively improve

the detection method by maximizing the coverage of the detector region compared to the Voronoi cell of

the transmitted vector [80]. Before employing the detectors described in the previous subsections, it is

possible to reduce the channel matrix H in a pre-processing stage, aiming the performance enhance-

ment of the linear detectors. The LLL algorithm, proposed by the authors Lenstra, Lenstra and Lovász,

and named after them, was first introduced for real channels and then adapted to complex ones [86].

When considering complex channels a transformation of the complex constellation to a lattice is also

necessary. Algorithm 1 shows the complex lattice reduction (CLR) receiver stages with the complex LLL

(CLLL) method:

Algorithm 1 Complex Lattice Reduction

a) Convert Complex constellation to lattice problem (for QAM constellation):
yL = 0.5(y + H(1 · (1 + j)))

b) Lattice Basis reduction:
(Hred,M)) = CLLL(H)

c) Detection with linear based filter:
sCLR = detect(Hred,yL)

d) Shift-back and obtain the estimated vector:
x̂ = 2MQΛ(sCLR)− 1 · (1 + j)

where 1 is a column vector of ones, M is a unimodular matrix (square matrix with integer entries and

det(M) = ±1) and QΛ is the function that outputs the closest lattice point. The complexity of the algo-

rithm is shown in [86] as O(n4 log(n)), where n = min{MT ,MR}.

3.2.7 Sphere Decoder

The state-of-the-art detection technique for MIMO systems is called sphere decoding and is an exact

method in terms that it can achieve the same performance of the ML detector, but with an on average

much lower complexity. The main idea behind this detector relies on advanced lattice theory, where it is
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possible to decompose the given lattice and the received vector in a rigid rotation matrix, for which the

closest vector problem simplifies. The equivalent lattice obtained has the property that it is possible to

set a norm of any lattice point composed by independent contributions. In order to find the closest vector

to the received one a tree based search is performed using the referred norm and by comparing it to an

upper bound. If the norm upper bound is properly chosen, the ML solution is always found [80].

The complexity of the algorithm is measured by the number of tree nodes that are needed to visit,

and it is on average given by O(mαMT ) with 0 ≤ α ≤ 1 [87]. The complexity is exponential, however for

low dimensional lattices, sphere decoders (SD) are affordable to used.

3.2.8 Performance Evaluation

The performance of the described detectors (except from the SD) is compared based on the BER plots

in Fig. 3.2. Uncoded MIMO in additive white Gaussian noise with MT = 4, MR = 4 and with 4-QAM

and 16-QAM modulation schemes is used for this assessment. The channel matrix is assumed to be

Rayleigh fading, i.e., each entry of H is i.i.d. as CN (0, 1), and the noise is distributed as CN (0, σ2
n).

Monte Carlo simulation is used with 106 channel realizations. The diversity order may be measured from

the slope of the curves.
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Figure 3.2: BER vs SNR (total SNR = Px/σ
2
n) performance of the implemented detectors.
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The ML decoder exhibits a diversity order of dML = min{MT ,MR} = 4. The ZF and MMSE achieve

dZF,MMSE = MR − MT + 1 = 1, however, the MMSE receiver has a gain when compared with the

ZF from considering the additive Gaussian noise. The OSIC also achieves a diversity order dOSIC =

MR −MT + 1 = 1, but with a higher dB gain margin in the BER curve when compared to the ZF and

MMSE, respectively. Finally the CLLL has a diversity order of dCLLL = MR = 4, the same diversity order

of the ML detector [88], as previously stated as optimal condition.

3.3 Broadband MIMO

The study of the MIMO channel presented above assumed a frequency-flat channel, represented by

H, which only depends on the instantaneous input x(n) to generate its output y(n). This procedure is

commonly presented in the literature, where it is assumed that each entry of the MIMO channel is a

composition of multiple scatters summed at the output to form a complex gain, and which vary faster

than the symbol interval, or more specifically, assuming the symbol rate is less than the coherence

bandwidth of the channel. Nevertheless, most systems that operate in broadband need to deal with

frequency-selective MIMO channels [89, 90], since the previous assumption is no longer valid. Modern

wireless applications require faster data rates where the flat fading assumption cannot be assumed,

enhancing the study of techniques to overcome this problem. The channel equation for this system

representation now becomes

y(n) = H(z)x(n) + n(n), (3.15)

where x(n) ∈ CMT represents the complex symbol vector and n(n) ∈ CMR the additive noise, for both

n, k ∈ Z. The frequency-selective channel is here represented by its z-transform

H(z) =

L∑
k=0

H[k]z−k, (3.16)

where z denotes the delay operator, i.e., z−kx(n) = x(n − k), while L represents the causal channel

order [91]. The MIMO impulse response at instant n− k is H[k] ∈ CMR×MT , where quasi-static fading is

assumed, i.e., the channel is fixed for a transmission frame and for that reason does not depend on the

time instant n.

The main disadvantage of this kind of channel is the inter-symbolic interference (ISI), that spreads

out a symbol in time, overlapping its energy to subsequent symbols. It is necessary to cope with both

inter-pair interference (IPI) associated with space-time communication and at the same time handle the

ISI present in frequency-selective channels.

3.3.1 Exploiting Frequency Selective Channels

One may think that ISI is undesirable in wireless communications, since it degrades the performance of

frequency-flat MIMO receivers, as previously studied. However, if treated properly, this phenomenon can

provide new degrees of freedom, providing more resolvable paths to decode a symbol. The maximum
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number of uncorrelated paths between the transmitter and the receiver is then MTMR , for flat fading channels,

MTMR(L+ 1) , for frequency-selective channels.
(3.17)

The previous equation shows that frequency-selective channels may actually achieve higher rates

than flat channels. This issue has been analysed in [92], where the authors develop a simulation-based

method to compute the achievable rate of MIMO systems operating under ISI conditions. The main

result to mention is that the rate increases with the selective channel order L. Methods for combating

ISI are usually categorized into single carrier techniques or multiple carrier techniques. The first method

uses only one carrier frequency to transport information that is filtered, equalized, at the receiver (it can

be performed linear or feedback equalizers). The latter, consist of splitting the broadband signal that

suffers ISI into several small narrowband signals that only perceive a flat channel. Once this is done,

the previously discussed MIMO techniques can be applied to each flat fading block channel. Single

carrier systems are computationally more demanding than multiple carrier systems, and for that reason

most MIMO transmissions do not employ single carrier systems to mitigate frequency-selective multipath

effects. In the next section, the most well-known multiple carrier method to combat ISI is presented.

3.3.2 MIMO OFDM

Orthogonal frequency division multiplexing (OFDM) is a multiple carrier transmission scheme that em-

ploys orthogonal waveforms to carry information, and, therefore, is more spectrally efficient when com-

pared to single frequency division schemes. With the development of powerful digital signal processing

boards, OFDM has also become computationally efficient, becoming today the most attractive trans-

mission modulation in broadband wireless systems. Originally developed for frequency selective SISO

systems, the generalization of OFDM for MIMO systems is straightforward, and for that reason only a

brief explanation of the MIMO-OFDM concept is given. Fig. 3.3 displays a simplified OFDM system.
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The main idea is to use complex exponential orthogonal waveforms to transmit the symbols in each

antenna. Equation (3.18) shows the discrete version of the OFDM symbols

s′j(k
′) =

Ns−1∑
n=0

xj(n)ej2πk
′n/Ns , (3.18)

where j ∈ {1, · · · ,MT } is the index of the jth antenna stream and Ns represents the number of wave-

forms used, or subcarriers. As one may recognize, s′j(k
′) is the inverse discrete Fourier transform (IDFT)

of aNs block of x(n) [91], thus, the receiver applies the inverse procedure, i.e., the discrete Fourier trans-

form (DFT) to obtain back the sequence being transmitted. Note the index k′ and n are employed to

distinguish between a signal before and after IFDT. A close analysis to the DFT properties shows that it

is still necessary to add a guard interval between OFDM sequences, so that they do not suffer from the

delay spread introduced by ISI [79]. This guard interval is usually a cyclic prefix that reproduces the last

OFDM symbols, and should be sufficiently large so that (in discrete time) it is larger than the channel

resolvable multipath effect, i.e., Ncp ≥ L. Therefore, the transmitted sequence of OFDM symbols in

each antenna is

sj(k
′) =

 s′j(k
′ +Ns −Ncp), k′ = 0, ..., Ncp − 1

s′j(k
′ −Ncp), k′ = Ncp, ..., Ns +Ncp − 1.

(3.19)

The received sequence, after the frequency-selective channel effect, in receive antenna i at time

index k′ is given by

ri(k
′) =

MT∑
j=1

L∑
l=0

h
(l)
i,jsj(k

′ − l) + zi(k
′), n = 0, ..., Ns +Ncp − 1, (3.20)

where h(l)
i,j , l = 0, ..., L is the channel impulse response and zi(k′) the additive noise at receive antenna

i. At this stage, the cyclic prefixed is removed

r′i(k
′) =

 ri(k
′), k′ = 0, ..., Ns − 1

0, otherwise.
(3.21)

The receiver finally performs the DFT of r′i(k
′) to obtain

yi(n
′) =

Ns−1∑
k′=0

r′i(k
′)e−j2πk

′n′/Ns =

Ns−1∑
k′=0

ri(k
′ +Ncp)e

−j2πk′n′/Ns

=

Ns−1∑
k′=0

MT∑
j=1

L∑
l=0

h
(l)
i,jsj(k

′ +Ncp − l)e−j2πk
′n′/Ns +

Ns−1∑
k′=0

zi(k
′ +Ncp)e

−j2πk′n′/Ns

=

Ns−1∑
k′=0

MT∑
j=1

L∑
l=0

h
(l)
i,j

(Ns−1∑
n=0

xj(n)ej2π(k′−l)n/Ns

)
e−j2πk

′n′/Ns + Zi(n
′)

=

Ns−1∑
n=0

MT∑
j=1

L∑
l=0

h
(l)
i,jxj(n)e−j2πk

′l/Ns

Ns−1∑
k′=0

e−j2πk
′(n−n′)/Ns + Zi(n

′),

(3.22)

where the n′ index is used to distinguish the signals’ instants at the receiver and at the transmitter, and
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Zi(n
′) is the DFT of the noise vector. By using the fact that

∑Ns−1
k′=0 e−j2πk

′(n−n′)/Ns = Nsδ(n − n′),

equation (3.22) simplifies as follows

yi(n
′) = Ns

MT∑
j=1

L∑
l=0

h
(l)
i,jxj(n

′)e−j2πk
′l/Ns + Zi(n

′)

= Ns

MT∑
j=1

xj(n
′)

L∑
l=0

h
(l)
i,je
−j2πk′l/Ns + Zi(n

′)

= Ns

MT∑
j=1

xj(n
′)Hi,j(n′)e−j2πk

′l/Ns + Zi(n
′), n′ = 0, ..., Ns − 1,

(3.23)

whereHi,j(n′) =
∑L
l=0 h

(l)
i,je
−j2πk′l/Ns is the frequency-selective response of the channel between trans-

mitter j and receiver i. This value is a complex constant, which illustrates the fact that the MIMO-OFDM

transforms a frequency-selective channel into Ns flat channels. These channels may be expressed in a

matrix format as in (3.24)

Y(n′) = NsH(n′)X(n′) + Z(n′), n′ = 0, ..., Ns − 1, (3.24)

where

Y(n′) = [y1(n′), ..., yMR
(n′)]T ,

X(n′) = [x1(n′), ..., yMT
(n′)]T ,

Z(n′) = [Z1(n′), ..., ZMR
(n′)]T

and

H(n′) =


H1,1(n′) · · · H1,MT

(n′))
...

. . .
...

HMR,1(n′) · · · HMR,MT
(n′)

 .
After obtaining the Ns frequency-flat channels, the detectors already studied may be used to elimi-

nate the IPI in each flat channel.

3.3.3 Performance of MIMO OFDM

In order to demonstrate the performance of MIMO-OFDM and analyse the benefits of this technique

in comparison with the flat fading channel and with what was done in section 3.2.8, the BER for a

frequency-selective MIMO channel with some of the detectors studied in section 3.2 is presented. In this

case, MIMO-OFDM modulation in additive white Gaussian noise is used, also with MT = 4,MR = 4,

and with 4-QAM and 16-QAM mapping schemes. The frequency-selective MIMO channel has 4 taps,

L = 3, and each matrix with entries generated form a i.i.d. CN (0, 1). The noise is also additive white

Gaussian noise with CN (0, σ2
z). Assume a block transmission with Ns = 1024 symbols. The cyclic prefix

is chosen to be equal to Ncp = L. The BER for the ZF, MMSE, OSIC-ZF and CLLL-MMSE are shown in

Fig. 3.4.
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Figure 3.4: BER vs SNR (total SNR = Px/σ
2
z ) performance of the MIMO-OFDM modulation with the

studied detectors.

The results show that, as previously predicted, the MIMO-OFDM system can cope with the frequency-

selective channel effect. The curves for the simulated detectors show the same slope, maintaining the

same diversity order in section 3.2.8, and approximately the same BER values, as one can compare

with the results obtained in Fig. 3.2. The OSIC-ZF filter remained with the same properties, having a

slight gain in comparison to the ZF and MMSE filters, but with the same diversity order of the latter. This

gain tends to vanish as the SNR improves, since the equivalent noise in each of the Ns channels also

disappears, attenuating the effect of per-stream decoding. The lattice reduction MMSE filter can also

achieve the same diversity as the ML detector, in this case for the frequency-selective channel.
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Chapter 4

Self-Interference Mitigation

Techniques

A relay station is a key element in a wireless multi-hop network, and is believed to incorporate future

communication systems. It may provide a wider coverage, a higher data rate and a lower transmit

peak power, which are substantially important for future millimeter wave communication, for example.

For that reason, a considerable amount of research has been conducted in relaying techniques, where

the integration of multiple-input multiple-output (MIMO) transmissions at the relay appear as a natural

solution to avoid the well-known key-hole effect [93]. In this chapter, in-band full-duplex communication

are proposed and studied for relay stations. However, these methods can be extended to any type of

communication. Thus, a sophisticated digital relay is considered, i.e., a relay that is capable of heavy

baseband signal processing, and incorporates multiple antennas (as much as necessary). Since the

relay simultaneously uses the same time and frequency resources, the main focus of this chapter is to

present and propose self-interference cancellation schemes, which are essential based on previously

published work combined with novel techniques here used for the first time. Initially, a model of the

relay channel considering the self-interference is presented. Then, two different techniques of spatial

suppression are introduced. After that, new feedback cancellation methods are proposed, resorting to

adaptive filtering.

4.1 Relay Station Model

The in-band full-duplex relay studied during this chapter is composed of MR receive antennas and MT

transmit antennas, which provide a two-hop communication between a NS antenna source and a ND

antenna destination, as Fig. 4.1 shows. The received signal at the relay and at the destination, at instant

n, is given by equation (4.1),

r(n) =HSRx(n) + HLIt(n) + nR(n),

y(n) =HRDt(n) + nD(n),
(4.1)
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Figure 4.1: System model of an in-band full-duplex relay station.

where it is assumed that x , [x1(n), · · · , xNS
(n)]T and t = fr(r[n− d], r[n− (d+ 1)], · · · ) ∈ CMT×1 are

the vectors containing the transmitted signals by both source and relay. The matrices HSR ∈ CMR×NS

and HRD ∈ CND×MT are the channel complex matrices from the sources to the relay and from the

relay to the destinations, respectively, which assume a MIMO frequency-flat block fading, as in related

literature, e.g. [31, 34]. The matrix HLI ∈ CMR×MT represents the loopback residual self-interference

effect, which it is assumed only accounts for the remaining interference power, not properly eliminated

by the propagation domain or by the self-interference suppression electronic circuits. Note that in the

digital domain stage only a residual effect of the self-interference is present, as in this case. The nR ∈

CMR×1 and nD ∈ CND×1 represents the source-relay and relay-destination additive white Gaussian

noise (AWGN), assumed i.i.d. CN (0, σ2
n). Function fr(·) represents the relay protocol, where d denotes

the integer digital processing delay, necessary for the relay digital operation [48]. This value has to be

strictly positive, since it may create problems in the practical implementation of relaying systems [39].

Furthermore, a decode-and-forward (DF) relay protocol is considered during this chapter, i.e., fr(·) is a

function that regenerates the received signal, which is then forwarded to the destination.

In order to suppress the resulting self-interference term, HLIt(n), the relay needs information from

its surroundings, i.e., it needs to know the channel matrices and its own transmitted vector. Thus, it is

assumed that the relay employs some estimation methods to acquire them [35]. The principle is simple

to describe by knowing t and HLI, it is possible to completely suppress the self-interference effect at the

relay in (4.1). However, the estimation of the channel matrices are usually not performed without errors,

as it is well-known in the literature. Therefore, in order to properly model a real system, the following

channel estimation noise in the channel matrices is assumed

HSR = H̃SR + EHSR
, HRD = H̃RD + EHRD

, HLI = H̃LI + EHLI
, (4.2)

where the first term on the right of each equality is the estimated channel matrix and the second term

represents its error when compared to the real value.

Furthermore, although the relay knows exactly the transmitted baseband signal it generates, after

the conversion from baseband to broadband the signal present in t suffers several distortion effects

such as frequency offset, AD/DA conversion imperfections, I/Q imbalance, oscillator phase noise, power
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amplifier non-linearities etc. [29]. The transmitted signal is often modeled as additive distortion, given

by

t = t̃ + Et, (4.3)

where t̃ is now the baseband transmitted vector known at the relay digital signal processing stage, and

Et accounts for the distortion. The processing stage considered is made in the digital domain and it

assumes that the propagation and analog domains have already reduced these effects significantly [34].

4.2 Interference Mitigation with Spatial Filtering Suppression

As already stated, the relay is able to apply MIMO receive filters, as well as MIMO transmit filters (dis-

cussed in Chapter 3), so that the residual self-interference is suppressed in the digital domain. To that

end, it is assumed that the relay operates in a DF protocol mode, exploiting the degrees of freedom of-

fered by spatial multiplexing in order to eliminate or suppress the self-interference that is generated. The

main idea is to create an equivalent relay free of self-interference by projecting the receive and transmit

signals onto orthogonal sub-spaces, hence creating the free interference system

r̂ = ĤSRx + n̂R,

y = ĤRDt̂ + nD,
(4.4)

where r̂ ∈ CM̂R×1 and t̂ ∈ CM̂T×1 are the respective receive and transmit signal vectors, ĤSR ∈

CM̂R×NS and ĤRD ∈ CND×M̂T represent the equivalent interference free MIMO channels and n̂R ∈

CM̂R×1 is the relay equivalent received noise, that accounts for the residual self-interference component

after mitigation and the AWGN term. Note that M̂R ≤ MR, M̂T ≤ MT are the equivalent interference

free relay dimensions, i.e., the input and output relay protocol available dimensions, while the remaining

dimensions are employed for projecting the interference. Thus, the new equivalent free interference

relay only processes a set of M̂R and M̂T streams from the total antenna set of MR and MT , to transmit

and receive information, respectively. Fig. 4.2 depicts in detail a relay that employs this technique, with

the suppression filters that are following defined.

Therefore, a receive filter is introduced and represented by GR ∈ CM̂R×MR , and a transmit filter

represented by GT ∈ CMT×M̂T . These filters should be designed so that the power of the equivalent

noise seen by the equivalent relay is minimized. This term is given by equation (4.5), and includes the

residual self-interference components

n̂R = ĤLIt̂ + GRHLIEt + GRnR, (4.5)

where system impairments and imperfect channel estimation terms as introduced above are considered,

and where the equivalent self-interference matrix, ĤLI, is given by

ĤLI = GRHLIGT = GRH̃LIGT + GrEHLI
GT. (4.6)
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Figure 4.2: Decode-and-forward relay with self-interference spatial suppression.

Thus, considering equation (4.5), the average power of the residual self-interference component

present at the defined equivalent relay can be computed as

E{(ĤLIt̂ + GRHLIEt)H(ĤLIt̂ + GrHLIEt)} =

= E{t̂HĤH
LIĤLIt̂}+ E{EtHHLI

HGR
HGRHLIEt}

= Tr{ĤLIRt̂Ĥ
H
LI}+ Tr{HLIGrREtHLI

HGR
H},

(4.7)

where Rt̂ = E{t̂t̂H} is the correlation matrix of the transmitted baseband signal at the relay, REt =

E{EtEtH} is the correlation matrix of the error associated with transmit impairements at the relay, as-

sumed independent from t̂, and where the last step comes from the algebra property that aHa =

Tr{aaH} [94]. Tr{·} represents the trace of a matrix. Therefore, as equation (4.7) suggests, the self-

interference effect may be mitigated as long as a proper design of the filters GR and GT is conducted.

This design should provide a self-interference attenuation, however, at the same time it should not inter-

fere with the relay transmit signal that has to reach the destination in order to be correctly decoded.

The design of the filters can be carried out in one of the following manners, as proposed in [34]:

• Independent design: One filter is designed without the knowledge of the other (which can be

replaced by I);

• Separated design: One filter is designed given the other filter expression;

• Joint design: The filters are completely designed together.

In the following sections, two different methods to design such filters are addressed.

4.2.1 Suppression with Null-Space Projection

The idea behind null-space projection (NSP) is the selection of a subset of antennas at the relay to

receive information, while the remaining antennas are used to project the self-interference (the desired

signal at the destinations). Therefore, in order to reduce the power of the self-interference present in the
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equivalent interference free system, an optimization problem that tries to minimize the power in equation

(4.6) is introduced as follows

min
GR,GT

‖ ĤLI ‖2F=‖ GRHLIGT ‖2F , (4.8)

where the self-interference power is measured with the help of the Frobenius norm. However, due to

the unknown noise sources introduced by system impairments and imperfect estimation of the self-

interference channel, as (4.8) is formulated, it is only possible to mitigate the interference known com-

ponent, which translates into

min
GR,GT

‖ GRH̃LIGT ‖2F . (4.9)

Considering a simple solution to the problem that tries to respect the desired signal while dealing

with the self-interference, an antenna selection method along with beamforming is employed in the

filters definition. The objective is that the relay transmitted signal is not affected by this method, being

available at the destination for decoding, and at the same time only the interference is canceled [34]. This

procedure may be performed with the help of the singular value decomposition of the known component

of the self-interference channel as

H̃LI = ŨΣ̃ṼH , (4.10)

where Σ̃ is a diagonal matrix containing the singular values of H̃LI, and Ũ and Ṽ are the unitary matrix

containing the basis vectors associated with it, such that ŨHŨ = I and ṼHṼ = I [79]. Thus, it is

possible to define the filters as

GR =

√
MR

M̂R

SR
T ŨH ,

GT =

√
MT

M̂T

ṼST,

(4.11)

where the matrices SR and ST select the rows and columns of the singular matrices, respectively,

performing the antenna selection mentioned above. The coefficients
√
MR/M̂R and

√
MT /M̂T are

introduced to normalize the filter matrices so that ‖ GR ‖2F= MR and ‖ GT ‖2F= MT .

Therefore, bearing in mind that the objective is to minimize the self-interference power inside the

equivalent interference free relay, the selection matrices are jointly designed based on the following

optimization problem

min
SR,ST

‖ ĤLI ‖2F=‖ GRH̃LIGT ‖2F=‖

√
MR

M̂R

SR
T ŨHŨΣ̃ṼH

√
MT

M̂T

ṼST ‖2F

min
SR,ST

MRMT

M̂RM̂T

‖ SR
T Σ̃ST ‖2F (4.12)

In order to solve (4.12), for a low number of antennas it is possible to obtain the solution by exhaustive

search of the
(
MR

M̂R

)(
MT

M̂T

)
possible combinations. Otherwise, other methods can be employed to

reduce the complexity of the problem, however, not in general ensuring the optimal choice.
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The target of NSP is to guarantee that all the known interference components are suppressed, i.e.,

having GRH̃LIGT = 0. This is only possible when setting the equivalent channel dimensions at the

relay station as

M̂R + M̂T + rank{H̃LI} ≤MR +MT ,

i.e., the overall space dimensions where the signals exists is sufficiently large to project the relay receive

signal and the signal that the relay transmits (desired at the destinations, but seen as self-interference

at the relay) onto orthogonal sub-spaces.

Hence, by setting proper space dimensions, the NSP is able to totally mitigate the known component

of the self-interference, however, at a cost of reducing the available relay dimensions and distorting the

relay transmitted signal, which may happen under the considered system impairments. Moreover, the

unknown self-interference components are not taken in consideration, which form the main limiting factor

of this method’s performance.

4.2.2 Suppression with MMSE Filtering

In order to avoid the cost of reducing the available dimensions at the relay to forward information and the

risk of distorting its transmitted signal, a minimum mean square error (MMSE) filter is here introduced.

In this case, the objective is that this filter is capable of both minimizing the distortion inflected at the

relay transmit signal t̂ by the employment of spatial filters, and attenuating the self-interference effect,

while taking into account the AWGN power, not considered in NSP. Thus, assume there is no reduction

in the relay dimensions, i.e., M̂R = MR and M̂T = MT . Defining the error covariance matrix M of the

relay input signal with respect to its desired vector to be detected, i.e., HSRx, according to [95], it is

possible to obtain

M = E{(HSRx− r̂)(HSRx− r̂)H}

= (I−GR)HSRRxHSR
H(I−GR)H + Rn̂R

,
(4.13)

where

Rx = E{xxH};

Rn̂R
= E{n̂Rn̂R

H} = E{(ĤLIt̂ + GRHLIEt + GRnR)(ĤLIt̂ + GRHLIEt + GRnR)H}

= GR(HLIRtHLI
H + RnR

)GR
H ;

Rt = Rt̃ + REt = E(t̃t̃H) + E(EtEHt ) = GTRxGT
H + REt .

As shown in Chapter 3, the MMSE filter may be obtained by the derivation of matrix M, with respect

to one of the filters, while fixing the other. For this specific case, to do so, the relation that a function

defined as f(Z) = Tr{ZA0Z
HA1} has derivative d

dZ∗ f(Z) = A1ZA0 is used [96]. Thus, it is possible to

find the MMSE filter expression for a full-duplex relay that preserves the transmit signal, suppressing the

self-interference and canceling the additive noise simultaneously, by taking ∂
∂GR

∗Tr{M} = 0 and fixing
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GT, as a separate filter design. Thus

∂

∂GR
∗Tr{M} =GR(H̃LIRtH̃

H
LI + RnR

)− (I−GR)H̃SRRxH̃H
SR = 0, (4.14)

which finally gives the receive filter expression as

GR = H̃SRRxH̃H
SR(H̃SRRxH̃H

SR + H̃LIRtH̃
H
LI + RnR

)−1. (4.15)

Note that the filter expression in (4.15) needs to be scaled to ensure that ‖ GR ‖2F= MR. Furthermore,

the transmit filter can be fixed to the identity matrix, i.e., GT = I.

4.2.3 Performance of Spatial Suppression

The performance of the presented self-interference suppression schemes is evaluated in terms of bit

error rate (BER), for a typical relay scenario, where the effect of the mentioned system parameters is

highlighted.

System Parameters

Consider that the channel matrices HSR and HRD are drawn from an i.i.d. Raleigh distribution with

normalized power equal to 0 dB, i.e., taken from CN (0, 1), while the loopback interference has a sim-

ilar distribution, however, with varying self-interference power as HLI ∼ CN (0, σ2
LI). Note that it is

assumed non line-of-site in HSR and HRD, as in a typical urban cellular environment, and also non

line-of-site in HLI, since the propagation techniques and analog circuits have already removed some

of the self-interference power [15]. The transmit source and relay signals have normalized powers, i.e.,

E{xHx} = 1 and E{t̃H t̃} = 1. The system impairments are taken into consideration in the form of the

relay transmitted signal noise component, generated as Et ∼ CN (0, σ2
t ). Also, in the form of channel es-

timation errors present in the matrices H̃SR, H̃RD with distribution EHSR,RD
∼ CN (0, σ2

H), and H̃LI with

distribution EHLI
∼ CN (0, σ2

H · σ2
LI). Thus, the system performance will be dependent on the unknown

components power σ2
t , σ2

H and σ2
LI . For the transmission itself, consider uncoded MIMO with a 16-QAM

and 64-QAM modulations and with a signal-to-noise ratio (SNR), defined by SNR = Px/PnR
= 10 dB,

i.e., the additive noise at the relay is generated as nR(n) ∼ CN (0, σ2
nR

), with σ2
nR

= −10 dB. The relay

employs a complex lattice reduction aided zero forcing detector (CLLL-ZF), described in section 3.2.6,

for both studied techniques.

The proposed techniques are compared with the case where no filtering is performed, i.e., when

setting the filters as GR = GT = I, commonly known in literature as natural isolation (NI), and also

with a half-duplex (HD) similar relay system. For the NSP scheme and for the purpose of simulation,

it is assumed that Ns = MR = M̂R = M̂T = 3, MT = 4, and that rank{H̃LI} = 1, which guarantees

the necessary condition of having a sufficiently large subspace dimension to project the interference,

M̂R + M̂T + rank{H̃LI} = MR + MT . For the MMSE filter a symmetric relay is considered, thus, it is

assumed that Ns = MR = M̂R = M̂T = MT = 3, and also that rank{H̃LI} = 1. The self-interference
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channel erroneous estimation and the transmitted signal noise effect are considered with typical values,

as σ2
H ∈ {10−2, 10−3} and σ2

t ∈ {10−2, 10−3}.

BER Curves

Fig. 4.3 shows the gain obtained when using NSP and MMSE in terms of BER, where it is possible to

observe the suppression of the self-interference. Firstly, it is worth mentioning that the BER of the sup-

pression schemes NSP and MMSE are not compared in the same figure, since the number of transmit

antennas at the relay station, MT , is not the same. The NSP requires the existence of a transmit null

space with the same dimension of the self-interference channel, which is done by introducing one more

antenna at the relay transmit side, since for simulation purposes it is considered rank{H̃LI} = 1. The

MMSE can be employed without introducing an extra antenna, therefore reducing the relay station cost.

However, the schemes are compared for the same system parameters and their performance can be

evaluated together.

NSP: As may be seen in Fig. 4.3(a) and Fig. 4.3(c), the NSP suppression scheme is able to obtain

at most a 20 dB margin gain, when compared to the NI curve, i.e., it is possible to transmit in full-duplex

relaying mode for about 20 dB of self-interference power more, maintaining the same performance of an

HD equivalent relay, while doubling the transmission spectral efficiency. The NSP curves for different

values of (σ2
H, σ

2
t ) also show that the main degradation effect is caused by the errors in the estimation of

the self-interference channel matrix (comparison between dotted red curve with the dotted orange and

brown ones). This matrix is used to perform the spectral decomposition for beam selection, therefore,

exposing the NSP performance to errors in the self-interference channel matrix.

MMSE: When employing the MMSE filters, it is no longer possible to maintain the same performance

of an equivalent HD relay when the effects of the self-interference start to be considerable, as it may

be observed in Fig. 4.3(b) and Fig. 4.3(d). Nevertheless, the MMSE filter is capable of significantly

suppress the self-interference, as suggested by the filter expression in equation (4.15). The BER curves

for both simulated modulations show a gain of 25 dB when compared to NI, however, only for higher

BER values than the HD system. Moreover, the considered channel estimation errors and relay signal

transmitted noise effect on the MMSE performance is approximately similar (BER curves similar for the

considered (σ2
H, σ

2
t ) pair). This effect is explained by the fact that the MMSE filter expression takes into

consideration the mentioned effects power level, thus, being able to combat it.

Finally, on the one hand, the NSP is able to maintain the HD BER for a broad level of unknown

interference power, at a cost of introducing extra degrees of freedom by placing more antennas at the

relay (which directly depends on rank{H̃LI}) and being more sensitive to the system impairments. On

the other hand, the MMSE filters cannot suppress the interference while maintaining the HD BER values,

however, it can achieve a better performance for higher values of BER and can use all the available

degrees of freedom for transmitting information. Moreover, the different simulated modulations depict

different levels of error floor, i.e., the error associated with the HD relay. The interference mitigation is

not affected by this parameter, as expected.
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Figure 4.3: Comparison of NSP (with Ns = MR = M̂R = M̂T = 3, MT = 4), MMSE (with Ns = MR =
M̂R = M̂T = MT = 3), with the NI and HD respective equivalent systems for different self-interference
power, σ2

LI , and system impairments power (σ2
H, σ

2
t ). The modulation schemes used are 16-QAM and

64-QAM.
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4.3 Interference Mitigation with Feedback Cancellation

(The work in this section was accepted for publication in [11])

Besides spatial filtering, another possibility to cancel the self-interference present at a relay is to use

feedback cancellation techniques. These techniques are based on the idea that the relay knows the

signal it is transmitting and estimates the channel it goes through, or has a good approximation of both

at least. Therefore, a replica of the loopback signal arriving at the relay may be subtracted in order to

cancel this problem in a feedback fashion. The idea is a kin to what happens in the analog domain

interference suppression circuits, however, the need to further suppress the interference in a dynamic

way, i.e., capable of tracking channel variations, requires the introduction of this baseband processing.

When compared to the previously presented interference suppression with spatial filtering, feedback

cancellation does not reduce the input and output dimensions of the relay and does not distort the de-

sired signal at the destinations [44]. Thus, feedback cancellation schemes are proposed and analyzed,

focusing on MIMO frequency-selective channels, rarely studied in literature, and also exploring OFDM

based transmissions. In order to overcome the channel estimation errors and the transmitted signal

noise, presented in the previous section, the use of adaptive methods to estimate the self-interference

effect is proposed [97, 98].

4.3.1 Broadband Relay Channel with Feedback Cancellation

The architecture considered in this section is similar to the one demonstrated in section 4.2, however,

adapted to MIMO frequency-selective channels with feedback cancellation. These channels are com-

monly present in broadband communication, where the rate of the transmitted signal is larger than the

channel coherence time, thus, creating the inter-symbol interference (ISI) phenomenon. Therefore, the

self-interference is now canceled by means of a feedback filter, which subtracts a version of the output

transmitted signal to the relay’s input. Fig. 4.4 depicts the equivalent discrete-time proposed system.
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Figure 4.4: System model of a feedback interference canceling relay.

At time instant n, a source signal x(n) ∈ CNS×1 is transmitted via a relay station to a destination.

The relay station receives a version of that signal, r(n) ∈ CMR×1, after being subject to the discussed
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frequency-selective channel effects in section 3.3. Then, the relay sends an estimation of the received

signal, t(n) ∈ CMT×1, which finally reaches the destination as y(n) ∈ CND×1. Equation (4.16) shows

the expressions for the relay and destination received signals

r(n) =HSR(z)x(n) + HLI(z)t(n) + nR(n),

y(n) =HRD(z)t(n) + nD(n),
(4.16)

where now HSR(z) ∈ CMR×NS of order LSR, HRD(z) ∈ CND×MT of order LRD and HLI(z) ∈ CMR×MT

of order LLI , are the z-transform matrices of the source to the relay, relay to the destination and

self-interference channels, respectively (see section 3.3 for the frequency-selective channel definition).

Again, nR(n) and nD(n) are the additive white Gaussian noise at the input of the relay station and des-

tination, respectively. The relay DF protocol, fr(·), is independent of the self-interference cancellation

architecture, and regenerates a delayed estimation of the NS source data streams, t̃(n) = x̂(n − d) =

fr(e(n − d), e(n − d − 1), · · · , e(n − d − D)), where d stands for the necessary processing delay and

D + 1 is the length of the employed time-window for detection. In addition, the processing delay is con-

sidered strictly positive and sufficiently long [34], so that x(n−k) and t(n− l) become uncorrelated, i.e.,

E{x(n− k)tH(n− l)} = 0, for all k = 0, · · · , LSR and all l = 0, · · · , LLI . The errors in the estimations of

the channel matrices are still considered, as well as the error in the transmitted signal after broadband

conversion. In this case, it is assumed each channel tap, of the three frequency-selective channels, has

an additive estimation error that varies rapidly, as equation (4.17) illustrates.

H[k] = H̃[k] + EH[k](n),

t(n) = t̃(n) + Et(n).
(4.17)

As mentioned above, in order to mitigate the self-interference, instead of using spatial filtering, a feed-

back filter in the time domain is introduced. The main objective is to estimate the loopback channel effect

on the relay transmitted signal, i.e., f(n) = HLI(z)t(n), employing a finite impulse response filter (FIR)

defined as A(z) ∈ CMR×MT , with LA order. Therefore, the signal z(n) = A(z)̃t(n) is added inside the

relay to the receive signal r(n), generating e(n), which is given by

e(n) = r(n) + A(z)̃t(n),

= HSR(z)x(n) + HLI(z)t(n) + nR(n) + A(z)̃t(n).
(4.18)

4.3.2 Conventional Time-Domain Cancellation

Time-domain cancellation (TDC) is the trivial solution to the problem presented above, as it uses a self-

interference channel estimation independent of the relay transmission to define the filter’s MR ×MT ×

(LA + 1) parameters and to perform the cancellation of the self-interference [34]. The feedback filter is

then set to

A(z) = −H̃LI(z), (4.19)
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where the filter order is the same as the channel order, i.e., LA = LLI . However, this procedure is

severely harmed by the above mentioned system impairments coming from an independent estimation

process, and for that reason the residual interference cannot be totally removed. This technique is

dependent on the power of these residual terms, given in the last line of (4.20), which will affect the

system performance.

f(n) + z(n) = HLI(z)t(n) + A(z)̃t(n)

= H̃LI(z)̃t(n) + EHLI
(z)
(
t̃(n) + Et(n)

)
+ H̃LI(z)Et(n)− H̃LI(z)̃t(n)

=

LLI∑
k=0

EHLI
[k]
(
t̃(n) + Et(n)

)
+

LLI∑
k=0

H̃LI[k]Et(n),

(4.20)

In fact, this method is only able to cancel the known term H̃LI(z)̃t(n), while the remaining terms present

in (4.20) are fed to the relay detector with the desired signal.

This effect is clearly observed when the power spectral density (PSD) of the relay input signal is

derived. To that end, the autocorrelation matrix of e(n) is presented in (4.21), considering e(n) as a

weak stationary process and constant channel matrices for a block interval [91].

Re,e(k) = E{e(n)eH(n− k)}

= E{(HSR(z)x(n) + HLI(z)t(n) + nR(n) + A(z)̃t(n))

· (HSR(z)x(n− k) + HLI(z)t(n− k) + nR(n− k) + A(z)̃t(n− k))H}

= HSR(z)Rx,x(k)HSR
H(z) +

(
HLI(z) + A(z)

)
Rt̃,̃t(k)

(
HLI

H(z) + AH(z)
)

+ HLI(z)REt,Et(k)HLI
H(z) + RnR,nR

(k),

(4.21)

where Rx,x(k) = E{x(n)xH(n − k)}, Rt̃,̃t(k) = E{t̃(n)̃tH(n − k)}, REt,Et(k) = E{Et(n)EtH(n − k)},

and RnR,nR
(k) = E{nR(n)nR

H(n − k)} represent the autocorrelation matrices of x(n), t̃(n), Et(n),

and nR(n), respectively. The noise is considered to be AWGN and not correlated with both transmitted

signals from the source and from the relay, i.e., E{nR(n)tH(n − k)} = 0 and E{nR(n)xH(n − k)} = 0.

Moreover, as mentioned above and very important in these feedback filters, the source transmitted

vector and the relay transmitted vector are also uncorrelated, since it is assumed that

E{(HLI(z)t(n))HHSR(z)x(n− k)} = E{x̂H(n− d)HLI
H(z)HSR(z)x(n− k)} = Pxδ(k − d),

for k = 0, · · · , LSR, and since d is considered sufficiently large, i.e., d ≥ LSR. The PSD of e(n) follows

now by taking the z-transform of the autocorrelation matrix Re,e(k), given by

Φe,e(z) =

+∞∑
k=−∞

Re,e(k)z−k

= HSR(z)Φx,x(z)HSR
H(1/z∗) +

(
HLI(z) + A(z)

)
Φt̃,̃t(z)

(
HLI

H(1/z∗) + AH(1/z∗)
)

+ HLI(z)ΦEt,Et(z)HLI
H(1/z∗) + ΦnR,nR

(z)

(4.22)
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= HSR(z)Φx,x(z)HSR
H(1/z∗)︸ ︷︷ ︸

desired component

+
(
H̃LI(z) + EHLI

(z) + A(z)
)
Φt̃,̃t(z)

(
H̃LI(1/z

∗) + EHLI
(1/z∗) + A(1/z∗)

)︸ ︷︷ ︸
noise level possible to be suppressed

+
(
H̃LI(z) + EHLI

(z)
)
ΦEt,Et(z)

(
H̃LI(1/z

∗) + EHLI
(1/z∗)

)
+ ΦnR,nR

(z)︸ ︷︷ ︸
residual noise level

,

where it was used the z-transform property that F{H(z)Rx,x(k)HH(z)} = H(z)Φx,x(z)HH(1/z∗) [91]

and where the PSD of t(n) is given by Φt,t(z) = Φt̃,̃t(z) + ΦEt,Et(z).

Thus, as shown above, the design of the feedback filter can be designed so that the noise in the

interference channel HLI(z) is minimized or completely canceled. However, there is always a power

component that comes from the noise in the relay transmit signal, impossible to handle using this feed-

back cancellation technique. In the following sections, adaptive feedback cancellation filters that try to

estimate the channel HLI(z) on the fly, i.e., based on the signals transmitted by the relay and carrying

information, are proposed and evaluated. The so-called TDC method presented in this section serves as

a model for comparison, since it is assumed that it uses typical values for the channel estimation errors

and is independent of the relaying operation (therefore designated as conventional). Nevertheless, the

following adaptive feedback filtering is a more complex and interesting form of time-domain cancellation.

4.3.3 Least Mean Square Cancellation

Aiming at improving the relaying system performance, adaptive filtering techniques are proposed. This

type of cancellation schemes only makes use of the available signals at the relay, thus, is not dependent

on estimations of the channel self-interference matrix and the errors it introduces. Furthermore, adaptive

filters are capable of tracking temporal variations of the self-interference channel [98].

As mentioned above, consider only estimators that are based on direct methods, i.e., that are focused

on a system identification problem using the observed signals. The target of the relay station is to esti-

mate the self-interference channel by knowing the time delayed transmitted vectors [̃t(n), t̃(n − 1), · · · ],

and the received vector it observes, r(n). Defining z(n) to be equal to the correction vector the relay

performs in its input, i.e., z(n) = A(z)̃t(n), as in Fig. 4.4. The goal is then to estimate f(n) as

z(n) = f̂(n) = A(z)̃t(n) =

LA∑
k=0

A[k]̃t(n− k). (4.23)

To do so, the criterion here employed to determine the filter parameters will consist of the mean square

error (MSE), which is simply given by the following expression

MSE(n,A(z)) = E{
(
f(n)− f̂(n)

)H(
f(n)− f̂(n)

)
}

= E{
(
f(n)−

LA∑
k=0

A[k]̃t(n− k)
)H(

f(n)−
LA∑
l=0

A[l]̃t(n− l)
)
},

(4.24)

and where it may be further developed as a MIMO generalization of the well studied SISO case to take
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the form

MSE(n,A(z)) = E{fH(n)f(n)− 2

LA∑
k=0

t̃H(n− k)AH [k]f(n) +

LA∑
k=0

LA∑
l=0

t̃H(n− k)AH [k]A[l]̃t(n− l)},

(4.25)

Using the vector relation that aHa = Tr{aaH} [94], and defining the concatenaton matrix of all filter

coefficients A? =
[
A[0], · · · ,A[LA]

]T
, equation (4.25) further simplifies to

MSE(n,A(z)) =Tr{E{f(n)fH(n)}} − 2Tr{E{
LA∑
k=0

A[k]̃t(n− k)fH(n)}}

+ Tr{E{
LA∑
k=0

LA∑
l=0

A[k]̃t(n− k)̃tH(n− l)AH [l]} =

(4.26)

= Tr{E{f(n)fH(n)}} − 2Tr
{
E
{[

A[0]| · · · |A[LA]
]
�
[̃
t(k)| · · · |̃t(k − LA)

]
⊗ fH(n)

}}
+ Tr

{
E
{[

A[0]| · · · |A[LA]
]
�
[̃
t(n)| · · · |̃t(n− LA)

]
⊗
[̃
t(n)| · · · |̃t(n− LA)

]H � [A[0]| · · · |A[LA]
]H}}

,

where � represents the inner product between a composition of sub-matrices and a composition of

column sub-vectors, i.e.,
[
H[0]| · · · |H[L]

]
�
[
x(n)| · · · |x(n − L)

]
=
∑L
l=0 H[l]x(n − l), introduced to

generalize the filter SISO definitions for the MIMO case [99]. Further, ⊗ represents the Kronecker or

the outer product [94]. Defining the following correlation matrices of the signals present in expression

(4.24), assuming the involved vectors as weakly stationary processes,

Σt̃,f = E{[̃t(n)fH(n), · · · , [̃t(n− LA)fH(n)]} = [Rt̃,f (0), · · · ,Rt̃,f (LA)]T ,

Σt̃,̃t =


E{t̃(n)̂tH(n)} · · · E{t̃(n)̂tH(n− LA)}

...
. . .

...

E{t̃(n− LA)̂tH(n)} · · · E{t̃(n− LA)̂tH(n− LA)}

 =


Rt̃,̃t(0) · · · Rt̃,̃t(LA)

...
. . .

...

Rt̃,̃t(LA) · · · Rt̃,̃t(0)

 ,
equation (4.26) can be rewritten again in the compact form [98]

MSE(n,A(z)) = Tr{Rf ,f (0)− 2 AT
? Σt̃,f + AT

? Σt̃,̃tA?},

= Tr{Rf ,f (0)−ΣT
t̃,f

Σ−1
t̃,̃t

Σt̃,f + [A? −Σ−1
t̃,̃t

Σt̃,f ]
TΣt̃,̃t[A? −Σ−1

t̃,̃t
Σt̃,f ]}.

(4.27)

Therefore, it is clear from (4.27) that the optimal filter parameters with respect to minimizing the MSE

are given by

A?,Opt. = Σ−1
t̃,̃t

Σt̃,f . (4.28)

However, this expression of the optimal filter is defined based on the second order moments (correlation

matrices) of the involved signals, which have also to be estimated (due to the expected value). To that

end, it is resorted to the least mean square algorithm (LMS). The idea is to drop the expectation operator
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in MSE(n,A(z)) and compute the instantaneous error instead of the mean error,

M̂SELMS(n,A(z)) =
(
f(n)−

LA∑
k=0

A[k]̃t(n− k)
)H(

f(n)−
LA∑
l=0

A[l]̃t(n− l)
)
, (4.29)

and to use a gradient descent approach to update the filter estimations. Thus, consider the matrix with

the column concatenation of the relay transmitted vectors

T̃(n) =
[̃
t(n), · · · , t̃(n− LA)

]
∈ CMT×(LA+1),

and the vector with all the elements in T̃(n), given by t̄(n) = vect{T̃(n)} ∈ C(LA+1)MT×1. The MSE

criterion for the LMS algorithm is then obtained, based on matrix derivation properties [94], in a compact

representation as

∂

∂A?
M̂SELMS(n,A?) =

∂

∂A?

(
f(n)−

LA∑
k=0

A[k]̃t(n− k)
)H(

f(n)−
LA∑
l=0

A[l]̃t(n− l)
)

= − 2
(
f(n)−AT

? � T̃(n)
)
⊗ T̃H(n).

(4.30)

Applying the gradient descent algorithm, it is finally possible to achieve the LMS update rule as

Â?,n+1 = Â?,n −
µ

2

∂

∂A?
M̂SELMS(n,A?)

= Â?,n + µ
(
f(n)−AT

? � T̃(n)
)
⊗ T̃H(n),

(4.31)

where µ represents the step size of the gradient descent algorithm [99]. Highlighting each filter tap, the

update rule becomes

Â[k](n+ 1) = Â[k](n) + µ
(
f(n)−

LA∑
l=0

Â[l](n)̃t(n− l)
)
t̃H(n− k), k = 0, · · · , LA. (4.32)

The presented LMS algorithm is capable of estimating a parametric model of the self-interference

channel, concretely in a z-transform matrix representation. Nevertheless, it was considered that the

observed signal is f(n), which is in fact false. The observed signal is rather r(n). Thus, to derive a

practical filter update rule, it is necessary to compute the correlation between r(n) and t̃(n). Assuming

again weak stationary variables, one obtains

Rr,̃t(k) = E{r(n)̃tH(n− k)}

= E{(HSR(z)x(n) + f(n) + nR(n))̃tH(n− k)}

= E{f(n)̃tH(n− k)}},

(4.33)

where E{x(n)̃tH(n− k)} = 0, for a sufficiently large processing delay, and also E{nR(n)̃tH(n− k)} = 0

by the definition of Gaussian noise. This result allows to observe r(n) instead of f(n), since the correla-

tion matrix in (4.33) is Rr,̃t(k) = Rf ,̃t(k), therefore, not changing the filter convergence properties. The
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LMS update rule for each filter tap now becomes

Â[k](n+ 1) = Â[k](n) + µ
(
r(n)−

LA∑
l=0

Â[l](n)̃t(n− l)
)
t̃H(n− k), k = 0, · · · , LA. (4.34)

As may be observed, the filter update rule has slightly changed, however, its structure remains the same.

The equivalent noise present in the observed signal r(n) is now composed of the source and additive

noise vectors, which will affect the filter performance, mainly its convergence time. Furthermore, it is

worth mentioning that the LMS algorithm costs O(MT × (LA + 1)
3
), which come form the multiplication

of the filter matrix by the observed vector, for each filter tap.

Brief Analysis of the LMS

The properties of the LMS filter are broadly known in literature [98]. Nevertheless, the main character-

istics of the behavior of the filter for this case are here presented. The average system describing the

error propagation for the proposed LMS filter (see appendix A.1) is given by

Ã?,n = Â?,n −A?,Opt. ≈
[
I− µΣt̃,̃t

]
Ã?,n−1 − µf̃(n)⊗ T̃H(n), (4.35)

where A?,Opt. is as in (4.28) and f̃(n) = fOpt.(n) − r(n) =
∑LA

l=0 AOpt.[k]̃t(n − l) − r(n) is the filter

estimation error plus the relay desired signal. Equation (4.35) represents a time-invariant state-space

model with a stochastic input, which can be easily evaluated. The stability of the filter depends on the

eigenvalues of the system matrix I− µΣt̃,̃t. The filter will converge whenever its eigenvalues are strictly

inside the unite circle, which happens when 0 < µ < 2
λ1
, where λ1 is the maximum eigenvalue of Σt̃,̃t.

As equation (4.35) shows, and under a step size that guarantees convergence, the filter mean error

parameter converges to zero, since as an MMSE filter, the asymptotic algorithm error is orthogonal to

the observations, i.e., E{f̃(n)⊗ t̄(n)} = 0, for k = 0, · · · , LA.

The mean square error of this filter may also be evaluated. Considering appendix A.2 one can obtain

P(n) = E{Ã?,nÃH
?,n} =

[
I− µΣt̃,̃t

]
P(n− 1)

[
I− µΣt̃,̃t

]H
+ µ2E{f̃H(n)f̃(n)}Σt̃,̃t, (4.36)

which represents a linear time-invariant state space model with P(n) as state variables. Once again, the

above system, converges to a steady state value i.f.f. 0 < µ < 2/λ1. The steady state value of the error,

P, is obtained by solving the Lyapunov equation

P =
[
I− µΣt̃,̃t

]
P
[
I− µΣt̃,̃t

]H
+ µ2E{f̃H(n)f̃(n)}Σt̃,̃t, (4.37)

which, based on the spectral decomposition of Σt̃t̃, yields a diagonal matrix solution with entries

qi =
µ2E{f̃H(n)f̃(n)}

2− µλi
, for i = 1, · · · , LA. (4.38)
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where λi, for i = 1, · · · , LA, are the eigenvalues of Σt̃t̃. The above result shows for the possible choices

of µ that the mean square error of the filter parameters does not converge to zero. However, by choosing

an appropriated step size, the error can be made sufficiently small. In fact, there is a trade off between

small error and tracking capability of the filter. The first is achieved with a small step size, while the last

with a large one, within its bounds already mentioned. Taking into consideration the concrete problem

of estimating the self-interference channel, there is the necessity of reducing the estimation error. For

that reason, a small step size should be used. Small step sizes have problems tracking small variations

of the channel. Therefore, the most suitable is to use time varying step size, which can be initially large

to reduce the convergence time and can be made small after that, in order to minimize the estimation

error. In section 4.3.5, these LMS filter properties are addressed with more detail.

4.3.4 Recursive Least Squares Cancellation

The previously presented LMS adaptive filtering suffers from two main problems: poor convergence for

ill-conditioned systems and noise sensitivity [98]. The poor convergence happens when the correlation

matrix Σt̃,̃t is ill-conditioned, i.e., when there is a large eigenvalue spread. Also, the LMS filter expe-

riences a performance deterioration due to enhancement of the noise, since the observation vector is

r(n), instead of f(n), introducing additional noise terms that need to be filtered at the relay. For those

reasons, a more sophisticated numerical optimization algorithm for the estimation of the MSE is here

applied, aiming for better levels of self-interference suppression.

Thus, the recursive least squares algorithm (RLS) is adapted to the problem of full-duplex relaying.

Consider a less noise sensitive approximation of the MSE, given by

M̂SERLS(n,A(z)) =

n∑
k=1

λn−k
(
f(k)−

LA∑
l=0

A[l]̃t(k − l)
)H(

f(k)−
LA∑
l=0

A[l]̃t(k − l)
)
, (4.39)

where 0 < λ ≤ 1 is the forgetting factor of the algorithm, which regulates the filter dependency on previ-

ous observations. The RLS is derived by exploiting the second derivative of the MSE as a newton type

algorithm. Therefore, taking the first and second derivatives of the expression in (4.39) (see appendix

A.3) it is obtained

∂

∂A?
M̂SERLS(n,A(z)) =

∂

∂A?

( n∑
k=1

λn−k(f(k)−
LA∑
l=0

A[l]̃t(k − l))
)H( n∑

l=1

λn−l(f(l)−
LA∑
l=0

A[l]̃t(k − l))
)

= − 2Σ̂RLS
t̃,f

(n) + 2Σ̂RLS
t̃,̃t

(n)A?,n,

(4.40)

∂2

∂A?
2 M̂SERLS(n,A(z)) =

∂2

∂A?
2

n∑
k=1

λn−k
(
f(k)−

LA∑
l=0

A[l]̃t(k − l)
)

= 2Σ̂RLS
t̃,̃t

(n),

(4.41)

where Σ̂RLS
t̃,f

(n) =
∑n
k=1 λ

n−kf(k)⊗T̃H(k),∈ C(LA+1)MT×MR and Σ̂RLS
t̃,̃t

(n) =
∑n
k=1 λ

n−kt̄(k)⊗t̄H(k),∈
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C(LA+1)MT×(LA+1)MT , and A?,n contains the vertical vector concatenation of the feedback filter coeffi-

cients, as previously defined for the LMS filter, all for time instant n. Now, applying the newton method

to update the filter coefficients, it is possible to obtain the basic form of the RLS algorithm as

Â?,n = Â?,n−1 −
µ

2

[ ∂2

∂A2
?

M̂SERLS(n, Â?(n− 1))
]−1 ∂

∂A?
M̂SERLS(n, Â?(n− 1))

= Â?,n−1 + µ
[
Σ̂RLS

t̃,̃t
(n)
]−1
(
Σ̂RLS

t̃,f
(n)− Σ̂RLS

t̃,̃t
(n)Â?,n−1

)
,

(4.42)

with the RLS correlation matrices being also updated at each iteration by taking Σ̂RLS
t̃,̃t

(n) = λΣ̂RLS
t̃,̃t

(n−

1) + t̄(n)⊗ t̄H(n) and Σ̂RLS
t̃,f

(n) = Σ̂RLS
t̃,f

(n− 1) + f(n)⊗ T̃H(n).

The filter update expression in (4.42) is usually not employed when applying this filter, since the

inversion of a ((LA + 1)MT ) × ((LA + 1)MT ) matrix is required. Therefore, the filter expression can

be further improved in terms of computational efficiency, resorting to the Woodbury identity [94, Chap.

3.2.2]. Defining P̄(n) =
[
Σ̂RLS

t̃,̃t
(n)
]−1 and Rt̃(n) = t̄(n)⊗ t̄H(n), it is possible to derive the update rule

for this matrix as

P̄(n+ 1) =
[
λΣ̂RLS

t̃,̃t
(n− 1) + t̄(n)⊗ t̄H(n)

]−1

=
1

λ

[
P̄−1(n) +

1

λ
Rt̃(n)

]−1

=
1

λ

(
P̄(n)− P̄(n)Rt̃(n)P̄(n)

λ+ t̄H(n)P̄(n)̄t(n)

)
,

(4.43)

Finally, the RLS algorithm for the proposed in-band full-duplex relay station, taking again into consid-

eration that the observed vector is r(n) (already discussed in section 4.3.3), is characterized by the

following 3-step update rule

k(n) =
P̄(n)̄t(n)

λ+ t̄H(n)P̄(n)̄t(n)
,

Â?,n = Â?,n−1 + µk(n)
(
r(n)−

LA∑
l=0

Â[l](n− 1)̃t(n− l)
)H
,

P̄(n+ 1) =
1

λ

(
P̄(n+ 1)− k(n)̄tH(n)P̄(n)

)
,

(4.44)

where vector k(n) is the update direction of the filter [98]. The recursive algorithm is initialized with

Â?,0, and with P̄(0) = ηI that may be seen as an uncertainty of the initial filter guess. Moreover the

computational costs of the RLS is of the order O(((LA + 1)MT )2).

Brief Analysis of the RLS

Similar to what was done for the LMS, a brief overview of the RLS properties, focusing mainly on its

convergence rate and on the influence of the forgetting factor, is here illustrated. Firstly, consider the

case where there is no forgetting factor (λ = 1), i.e., all observed data is treated equally. The RLS

filter expression may also be obtained as, similarly to equation (4.28) , Â?,n =
[
Σ̂RLS

t̃,̃t
(n)
]−1

Σ̂RLS
t̃,q

(n) =[
1
nΣ̂RLS

t̃,̃t
(n)
]−1 1

nΣ̂RLS
t̃,q

(n) for an analysis purpose [98]. Under the law of large numbers, the RMS cor-
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relation matrices converge in fact to the Weiner solution in (4.28). As performed for the LMS filter, the

error matrix may be written as follows (see appendix A.4)

Ã?,n = Â?,n −A?,Opt. =
[
Σ̂RLS

t̃,̃t
(n)
]−1

Σ̂RLS
t̃,q

(n)−A?,Opt. =
[ 1

n
Σ̂RLS

t̃,̃t
(n)
]−1 1

n

n∑
k=1

f̃(k)⊗ T̃H(k).

(4.45)

Equation (4.45) leads then to the covariance of the parameter error (see appendix A.5)

Q(n) = E{Ã?,nÃH
?,n} =

1

n
E
{ n∑
k=1

n∑
l=1

f̃H(k)f̃(l)
}

Σ−1
t̃,̃t
, (4.46)

Thus, the error present in the RLS estimation, for λ = 1, goes to zero as n grows large, which shows

that the filter converges to the optimal solution after some iterations. However, when considering λ = 1,

the RLS filter looses the tracking properties since it converges always to the mean value.

For the case where 0 < λ < 1, by introducing the parameter λn−k in expression (4.45) and performing

the same manipulations, the filter coefficients error is obtained

Ã?,n =
[
(1− λ)Σ̂RLS

t̃,̃t
(n)
]−1

(1− λ)

n∑
k=1

λn−k f̃(k)⊗ T̃H(k), (4.47)

and for a large n and a λ close to 1, it is possible to show that [98]

Ã?,n ≈ Σ̂−1
t̃,̃t

(1− λ)

n∑
k=1

λn−k f̃(k)⊗ T̃H(k), (4.48)

which applying the same procedure in (4.46) leads to

Q(n) = E
{ n∑
k=1

n∑
l=1

Ã?,nÃH
?,n

}
= (1− λ)E

{ n∑
k=1

n∑
l=1

f̃H(k)f̃(l)
}

Σ−1
t̃,̃t
. (4.49)

This expression demonstrates that the error of the filter does not converge to zero, for any number of

taken iterations, since it considers the presence of the forgetting factor that acts as a weight for the

previous observations. This factor allows the filter to be able to track time variations, as the LMS does.

Therefore, it is intuitive that there also exists a trade-off between tracking capabilities and convergence

to the optimal value. As λ goes to one, the filter parameter error tends to zero, although yielding a poor

capability of tracking time variations of the self-interference channel. As λ gets close to zero, the filter

becomes capable of following faster channel time variations, at a cost of a larger estimation error.

4.3.5 Performance of Feedback Algorithms

This section evaluates the performance of the derived methods that cope with the problem of self-

interference in an in-band full-duplex relay station, mainly with the errors associated to the estimation

of the loopback self-interference channel matrix. The convergence time, the BER and the signal-to-

interference-plus-noise ratio (SINR) for different channel parameters are evaluated.
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System Parameters

Consider an uncoded MIMO-OFDM system, where NS = 2 source antennas transmit a 16-QAM or 64-

QAM modulated OFDM stream of data with a block of Nsub subcarriers and a cyclic prefix of Ncp = LSR

(as described in section 3.3), to a destination also with ND = 2 antennas. The relay is considered

symmetric and composed by MR = 3 receive antennas and MT = 3 transmit antennas. Further, the

channels are assumed to be all of the same order, i.e., LSR = LRD = LLI . The matrices HSR(z) and

HRD(z) are drawn from complex Gaussian distributions, with entries taken from CN (0, 1), while each

self-interference matrix channel tap has distribution HLI[k] ∼ CN (0, σ2
LII), for k = 0, · · · , LLI , where,

similarly to section 4.2.3, σ2
LI accounts for the residual power of the self-interference channel, after

propagation and analog-circuit first stage of mitigation. The filter order is set to be L = LA = LLI , so

that a perfect estimation of the self-interference channel can be achieved. The transmitted source and

relay signals have normalized power, i.e., E{xH(n)x(n)} = 1 and E{t̃H(n)̃t(n)} = 1. Moreover, consider

relay transmit signal noise, which is also considered as Et(n) ∼ CN
(
0, σ2

t

)
.

Convergence Time

The evaluation of the two algorithms’ convergence time, i.e., the number of iterations required from an

initial starting point, Â?,0 = 0 (and P̄(1) = I for the RLS), to reach a certain point where the filter

parameters satisfy an error metric (EM ) [44] is evaluated. This metric takes into consideration the

estimation of the self-interference matrix and the real self-interference channel matrix, and it is given by

equation

EM =
‖ Â?,n −HLI,? ‖2F
‖ HLI,? ‖2F

, (4.50)

where HLI,? =
[
HLI[0], · · · ,HLI[LA]

]T is the concatenation of the frequency-selective self-interference

channel, similar to that done for the filter parameters matrix Â?,n.

LMS: Considering the LMS filter convergence properties, 1000 realizations of the self-interference

channel are simulated, for a interference power set to σ2
LI = 1, with an update rule described in equation

(4.32). The simulation uses 16384 samples, which corresponds to two OFDM symbols with a block of

Nsub = 213 subcarriers. Also, the SNR, defined as Px

PnR
, is set to 15 dB, while the transmit relay noise is

made negligible by taking σ2
t = 10−5. In order to improve the channel estimation, and as stated in section

4.3.3, a varying step size is introduced, heuristically obtained, and given by the following expression

µ(n)



0.005, 1 ≤ n < N/4,

0.001, N/4 ≤ n < N/2,

0.0005, N/2 ≤ n < 3N/4,

0.0001, 3N/4 ≤ n ≤ N.

Fig. 4.5 depicts one case of the LMS filter parameters convergence for the scenario described above

and for L = 1, where it is possible to observe the convergence of the filter coefficient Â1,1[0] real and
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imaginary part in 4.5(a) and the filter coefficient Â1,1[1] real and imaginary part in 4.5(b). The different
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Figure 4.5: LMS estimation of the self-interference matrix coefficients Â1,1[k] with 16-QAM.

effects of the varying µ(n) may be observed in the figures, which help the algorithm to converge faster

and achieve a small error. On the one hand, when setting a high µ, the filter quickly converges to the

channel parameters, yielding a large error. On the other end, setting a small µ outputs a small estimation

error, however, causing the filter to converge slower. Nevertheless, the asymptotic estimation error is

never zero as predicted in the theoretical filter analysis. For this simulation one obtains an EM = −35

dB for the steady state stage of the filter (evaluated in the last iteration taken). The convergence time

is also analyzed, again defined as the number of iterations taken from the initialization point, set to

Ã?,n = 0, to reach a point where the error metric is required to be EM ≤ −30 dB. The frequency-

selective effect on the filter convergence time is evaluated, by considering different channel orders, in

this case with L ∈ {1, 3}. Fig. 4.6 displays the convergence time distributions in a histogram format

with overlaying Kernel distributions (using MATLAB histfit(·) function). As depicted in both figures, the
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Figure 4.6: Convergence time distribution for the LMS estimation of the self-interference matrix with
order L with 16-QAM.

convergence time is dependent on the number of channel taps, i.e., the channel order. The simplest
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frequency-selective channel with just one past tap is considered and a case with a severe level of ISI

with three taps. Both figures show that the convergence time is less than the block length considered for

the simulation. Also, the distribution takes an asymmetric shape due to the introduction of a time varying

step size. The step size changes at iteration 4069 and iteration at 8192, which creates clusters where the

filter may converge. In Fig. 4.6(a), the filter converges for some iterations with step size µ = 0.005 and

before iteration 4069. However, when a channel realization takes more than 4069 samples to converge,

the algorithm changes the step size to µ = 0.001, forcing the filter to converge immediately. In Fig. 4.6(b),

the same effect happens, however for L = 3, which introduces more ISI, forcing the filter to converge

slower. In this case, most iterations converge for µ = 0.001 and for less that 8192 samples. Nevertheless,

some realizations take more than 8192, where the algorithm changes again the step size to µ = 0.0005,

in order to force the filter convergence. Furthermore, the Kernel distribution allows an non-parametric

estimation of the density function, and for that reason is used to model the aforementioned asymmetric

effect. For L = 1 it is ensured that the channel estimation parameters converge for less than 8192, while

for L = 3 the LMS filter never takes more than about 1200 to converge, under the defined parameters.

Both values are in most of the cases affordable when compared to typical OFDM transmission lengths.

Finally, when converged, the LMS self-interference cancellation method allows a reliable communication

link to be established through the relay, even for a severe frequency selective channel.

RLS: In order to evaluate the RLS filter properties, consider a 213 block length, 1000 self-interference

channel realizations, L = 1, µ = 1 (usual values employed for the RLS [99]) and a forgetting factor λ = 1.

A convergence snapshot of the RLS filter parameters is shown in Fig. 4.7 for the filter coefficient Â1,1[0]

real and imaginary part and for the filter coefficient Â1,1[1] real and imaginary part. The convergence
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Figure 4.7: RLS estimation of the self-interference matrix coefficients Â1,1[k] with 16-QAM.

for this filter is virtually instantaneous, taking about 1500 symbols, which corresponds to a fourth of

a typical OFDM sequence with a 213 block. Also, the error metric for the steady state filter values is

about EM = −42 dB, which provides a 7 dB gain over the simulation carried out for the LMS filter.

The analysis of the RLS filter convergence is complemented with the histogram of the distribution of
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the convergence time. The error metric is again considered as EM < −30, also for L = 1 and L = 3

order self-interference channel, as Fig. 4.8 depicts. In addition, a lognormal distribution is overlaid on

the histograms. This distribution correctly models the convergence time, since it approximates a sum of

independent and identical distributions that take positive values. The figure shows that the convergence

mean time is about 1007 samples for L = 1, while for L = 3 it takes around 2896. The difference between

the mentioned values is explained with the same argument used for the LMS. When considering a higher

order for the self-interference channel, there is more ISI present at the relay, which forces the filter to

take more iterations to estimate that interference effect. Nevertheless, both values are less than the

considered OFDM symbol length, and are considered negligible among OFDM typical transmission

lengths.
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Figure 4.8: Convergence time distribution for the RLS estimation of the self-interference channel matrix
with order L with 16-QAM.

The RLS filter convergence time is significantly less when compared to the LMS filter convergence

time, even if both are acceptable in OFDM transmissions. By taking a better approximation and also

by exploiting the second derivative of the MSE expression for the full-duplex relay station, the RLS filter

performance drastically improves when compared to the LMS.

BER and SINR Curves

The SINR and the BER of the proposed LMS and RLS filters are evaluated for the considered parameters

above and for different values of interference power σ2
LI . Both are also compared with an equivalent

HD system, with the case of NI (no filtering scenario, i.e., A? = 0), and with the conventional TDC,

i.e., with typical estimation errors. In the case of the conventional TDC, the self-interference channel

estimation error power is typically considered as EHLI
[k](n) ∼ CN (0, σ2

H · σ2
LI), where σ2

H = 10−3, as

in [34]. The relay hardware imperfections, which are responsible for the transmit signal noise at the

relay, are evaluated with σ2
t = 10−5 and σ2

t = 10−3. This parameter affects both TDC, LMS and RLS

filters, therefore, it is worth studying its effect in the system performance. Furthermore, it is assumed a

64-QAM modulation of the symbols before the OFDM transmission, Rayleigh fading frequency-selective

channels with two taps, i.e., L = LLI = LSR = LRD = 1, and also with the filter order of LA = L = 1.

The LMS step size µ(n) is the one considered before, while the RLS step size and forgetting factor λ are
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equal to one. The relay is subject to a Gaussian distributed noise, nR(n) ∼ CN (0, σ2
nR

), with normalized

power σ2
nR

= −15 dB. Finally, the results were obtained with Monte-Carlo simulation of 2000 OFDM

transmitted symbols with length 213 samples.

Fig. 4.9 shows the SINR curves in dB, defined as

SINR =
‖ x(n) ‖2

‖ i(n) ‖2 + ‖ nR(n) ‖2
,

where the remaining interference component is given by i(n) = f(n) + z(n), after the cancellation meth-

ods analyzed for the four considered cases, when the LMS and RLS algorithm have converged, as

shown in the last section. There, it is possible to observe the large gain provided by the LMS and also

by the RLS cancellation in terms of SINR, showing that these methods are not affected by erroneous

channel estimation, as in the TDC case. The error in the estimated self-interference matrix does not al-

low the relay to efficiently mitigate the self-interference component when performing conventional TDC.

However, by employing these adaptive techniques one can reduce the residual error in this estimation,

which is translated to the SINR curve. Moreover, the relay transmit signal error, i.e., Et(n), only slightly

affects the SINR in the LMS and RLS for high self-interference power, where the preponderant factor

begins to be this error. For the conventional TDC, the factor that chiefly limits its performance is, in this

case, the channel estimation errors.
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Figure 4.9: Impact on the SINR of the self-interference power for the RLS, LMS, TDC and NI methods,
for different values of σ2

H and σ2
t .

The provided SINR gain in Fig. 4.9 eventually translates into a BER curve gain, as shown in Fig.

4.10. The relay uses a zero forcing (ZF) detector to decode the information from the source, as in

section 3.2.3. Firstly, a negligible relay transmit signal error is simulated, with σ2
t = 10−5, in order to

compare the channels estimation errors effect in both methods under analysis. Thus, in Fig. 4.10(a) it is
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possible to observe the LMS and RLS estimation of the self-interference shown in the previous section

translated to a BER curve as function of the self-interference channel power. Using these two methods,

an approximately 40 dB resilience in terms of self-interference is achieved, i.e., the relay supports 40

more dB of self-interference power at its input. However, when considering higher power relay transmit

errors, as in Fig. 4.10(b) for σ2
t = 10−3, the performance of the LMS and the RLS algorithms deteriorates

significantly. In fact, the 40 dB of gain shown before are reduced to 30 dB, revealing a great importance

in the errors in the relay transmit signal. Nevertheless, these methods still provide a gain of 10 dB when

compared to conventional TDC, in which performance is still limited by the errors in the estimation of the

self-interference channel.
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Figure 4.10: BER comparison of the proposed RLS and LMS algorithms, TDC and NI, for a 64-QAM
OFDM ZF detector, for different values of σ2

H and σ2
t .

It is worth mentioning that the LMS and RLS filters are capable of tracking time variations of the

self-interference matrix, although this aspect has not been explored in the performed analysis. Thus,

there is no need to estimate the channel in a certain interval of time, as the conventional TDC requires.

4.4 Concluding Considerations

This chapter has studied techniques that are capable of canceling the undesirable effect of the self-

interference present at a relay operating in full-duplex mode. Initially, a theoretical relay system is

prosed, that describes the problem of full-duplex relaying, highlighting the presence of a loopback self-

interference channel and the problem of having channel estimation errors and transmit signal discrepan-

cies. For that system, spatial suppression filtering is introduced as a technique able to reduce the power

of the residual self-interference component by means of MIMO filters. First, NSP is presented, which
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creates a null-space in order to transmit the relay signal without interfering with the receive signal. Then,

a MIMO filter based on the MMSE criterion is derived, which accounts simultaneously for the thermal

noise and self-interference power, while preserving the relay desired signal. After that, feedback filter-

ing is studied, where adaptive filtering techniques are resorted in order to improve the level of residual

self-interference cancellation. LMS and RLS adaptive filters are shown to have a good performance in

MIMO-OFDM frequency-selective transmissions, while the latter converges much more rapidly. Table

4.1 summarizes the proposed self-interference mitigation techniques gain in dB, when compared with

the case of NI in terms of BER.

Technique Gain
Natural Isolation Reference (0 dB)
NSP −20 dB
MMSE −25 dB
LMS −30 to −40 dB
RLS −30 to −40 dB
Perfect Cancellation −∞ dB

Table 4.1: Gain of the proposed self-interference techniques when compared to the NI case (in dB) in
terms of BER performance.
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Chapter 5

Massive MIMO Full-Duplex Relaying

for Independent Multipairs

(This work was partially done in collaboration with Francisco Rosário and published in [10])

Alongside the developments in in-band full-duplex communication, plenty of research has recently been

conducted on the capabilities of multiple-input multiple-output (MIMO) systems and its extension to very

large arrays. The idea in future networks is to use a large number of antennas at the access points,

aiming to serve more users with better connections. To do so, it is necessary to combine various signal

processing techniques, such as channel modeling and estimation, precoding and detection algorithms,

which should be efficient in terms of both complexity and performance. Massive MIMO techniques may

also provide some benefits when applied to full-duplex relaying. Its main advantage lies on the orthog-

onal properties of large scale channels, which helps in the mitigation of the self-interference inherent in

these systems. Furthermore, it allows linear detectors to perform close to optimal ones, thus reducing

the system complexity. For those reasons, this chapter proposes a massive MIMO relay station with in-

band full-duplex transmissions, designed to serve independent multipairs. The effects of massive MIMO

at the relay are evaluated, as well as the end-to-end (e2e) performance of the system. Moreover, an

optimal power allocation scheme that guarantees each link necessary rate is introduced.

5.1 System Model

The system model described here is similar to that studied in Chapter 4, although with some slightly

modifications. First, it is considered that K user pairs establish a wireless connection through a relay

station, which operates in in-band full-duplex mode, i.e., sharing the same time-frequency resources. For

that purpose, each user is equipped with a single antenna, while the relay is assumed to be equipped

with MR receiving antennas and MT transmitting antennas. The number of antennas at the relay are

assumed to be of a large dimension and, under the massive MIMO assumptions, are considered to be

much larger than the served communications pairs, i.e., K << MR,MT . Again, the nonexistence of a
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direct link between the sources and destinations is assumed, thus, the links are established only through

the relay station. A detailed system representation is depicted in figure 5.1, with the filters to be defined.

K sources
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 . . .

 . . .
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Figure 5.1: Massive MIMO full-duplex relay system with the filtering process detailed.

5.1.1 Channel Model

The desired system information, i.e., the data that flows from one end to the other of the two-hop relay

scenario, is carried by the vectors containing the transmitted symbols from the sources to the relay and

the symbols from the relay to the destinations, denoted by x ∈ CK×1 and t ∈ CMT×1, respectively.

These vectors are the result of a M -QAM mapping of the data bits, normalized and uncorrelated, such

that E{xxH} = I and E{tHt} = 1. Therefore, under these normalizations the power transmitted by each

source is independent of K and the total transmitted power at the relay dissociated from the number of

the relay transmit antennas, MT , such that the performance evaluation depends neither on the number

of pairs nor on the number of transmit antennas at the relay station. Consequently, the received vectors

at the relay and at the destinations are given by (5.1) and (5.2), respectively.

r = GSRD1/2
pS x +

√
pRHLIt + nR. (5.1)

yD =
√
pRGRDt + nD. (5.2)

The transmitted symbols carried by vector x, go through a MIMO channel from the sources to the relay

denoted by GSR ∈ CMR×K , whereas the symbols from the relay to the destinations go through GRD ∈

CK×MT . A different model for the fading effects is now considered, in the form of GSR = HSRDSR
1/2

and GRD = DRD
1/2HRD, where DSR and DRD are diagonal matrices with entries βSR,k and βRD,k

taken from a log-normal distribution, which account for large-scale channel fading, not considered in the

previous chapter. The fast-fading channel components are present in HSR and HRD, both with inde-

pendent entries taken from a Rayleigh distribution with unitary power CN (0, 1) . The self-interference

62



channel is again represented by matrix HLI, with distribution given by CN (0, σ2
LI), not having a large

scale fading effect, and where σ2
LI naturally accounts for the residual loopback self-interference power

after the suppression already imposed in both the propagation and analog-circuit cancellation domains.

The vectors nR ∼ CN (0, σ2
nR

) and nD ∼ CN (0, σ2
nd

) take into consideration the additive white Gaus-

sian noise at the relay and destinations, respectively. Finally, the diagonal matrix DpS with entries pS,k

regulates each source transmit power, while pR denotes the relay’s average transmit power. In this for-

mulation, large-scale fading effects based on the distance from users to the relay are being considered

and, thus, there is a need for each terminal and the relay to transmit with different powers. Therefore,

the residual interference will then depend strongly on pR.

5.1.2 Channel Estimation

In order to efficiently apply detection, precoding and self-interference mitigation techniques to allow the

establishment of reliable communication links through the relay, consider the use of traditional channel

estimations of the involved channel matrices, H̃SR, H̃LI and H̃RD of the true channel matrices, HSR,

HLI and HRD. Applying any of the estimation algorithms proposed in the literature [15], an error in the

channel small-scale fading effect matrices is assumed and modeled as in the previous chapter:

EHSR
, EHRD

, EHLI
∼ CN (0, σ2

H)

The difference between the estimates of this component and the true channel values are

HSR = H̃SR + EHSR
;

HLI = H̃LI + EHLI
;

HRD = H̃RD + EHRD
.

(5.3)

The presence of errors in the matrices estimations are only assumed in the small-scale fading chan-

nel components, whereas the large-scale fading matrices are perfectly known at the relay station. The

impact of any hardware imperfection and impairments at the relay, already discussed, are modeled by

means of an additive error component in the transmitted vector [34], which outputs t = t̃ + Et, where

t̃ is the vector to be transmitted after baseband filtering and where all elements of Et ∼ CN (0, σ2
t ) are

assumed to be uncorrelated with t̃. It is worth mentioning that the covariance of the self-interference

term
√
pRHLIt in (5.1) is here controlled by the parameters pR, σ2

LI , σ
2
t and σ2

H, while in Chapter 4 it is

considered that this effect is only affected by σ2
LI , σ

2
t and σ2

H, since there uniform power distribution is

assumed.

5.1.3 Detection and Precoding for Massive MIMO

The design of the detection and precoding of the considered two-hop transmission link it is firstly done

for an equivalent received signal r̂, whose self-interference component has been minimized by any of the

relaying protocol independent mitigation schemes. Hence, this system takes into account a transmission
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channel where massive array dimensions are always assumed, i.e., K << MR. Under this assumption,

linear processing techniques are proven to perform close to optimal [31]. Therefore, aiming to simplify

the relaying operation, the usage of a zero forcing (ZF) filtering for both detection and beamforming is

considered [100]. Using the estimation of GSR, denoted by G̃SR = H̃SRD
1/2
SR , the estimated symbols

after ZF filtering with Wzf , are given by

x̂ = Q(Wzf r̂) = Q
(
(G̃H

SRG̃SR)−1G̃H
SRr̂

)
, (5.4)

where Q(·) is a symbol-wise quantizer to the M -ary considered constellation set. Upon detection based

on x̂, the estimated symbols are forwarded to the destinations yD, that are assumed to have very limited

processing capabilities. Thus, a ZF precoder filter, Azf , is employed, as in

t̂ = Azf x̂ = αzfG̃
H
RD(G̃RDG̃H

RD)−1x̂, (5.5)

where G̃RD = D
1/2
RDH̃RD is the estimation of the true GRD and, αzf =

(
E{Tr{(G̃RDG̃H

RD)−1}}
)− 1

2 is a

scalar chosen to normalize the power of t̂, i.e., E(t̂H t̂) = 1. From G̃RD, αzf is computed considering

that t = αzfG̃
H
RD(G̃RDG̃H

RD)−1x̂ = αzfPx̂, and the fact that x̂ is zero-mean with covariance matrix

C = E{x̂x̂H} = I, it follows from [94] that

E{tHt} = α2
zfE{(Px̂)H(Px̂)} = α2

zfTr{PCPH} = 1. (5.6)

Tr{(G̃RDG̃H
RD)−1) = Tr{(DRDH̃RDH̃H

RD)−1}. (5.7)

Now noting that T , H̃RDH̃H
RD is a central Wishart matrix, where the columns of H̃RD ∈ CK×MT are

zero-mean complex Gaussian vectors with covariance matrix (1 + σ2
H)I, it comes from [101] that

E{(Tr{DRDT})−1} =

∑K
k=1

(
βRD,k(1 + σ2

H)
)−1

MT −K
. (5.8)

Merging the results of (5.6), (5.7) and (5.8), the normalization factor αzf is given by

αzf =

√
(MT −K)∑K

k=1

(
βRD,k(1 + σ2

H)
)−1 . (5.9)

5.2 Self-Interference Mitigation

The problem of combating the effect of self-interference is considered by means of a filtering process,

already discussed for small dimension matrices, and presented here for the considered system in Fig.

5.1 with large dimensions. Also by finding the optimal relay and sources transmit power for certain con-

ditions, it is possible to reduce the effect of this undesired consequence of in-band full-duplex relaying.

Note that the self-interference at the relay is directly related to its transmit power, therefore, special

attention should be given to this parameter.
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5.2.1 Linear Filtering

After setting the relay detection and precoding method, the self-interference mitigation problem needs

to be evaluated. Under the model given by (5.1), the goal of the relay is to minimize the self-interference

term
√
pRHLIt, while preserving the signal desired component GSRD

1/2
pS x and taking into account the

covariance of the noise vector RnR
at the relay. Thus, the minimum mean square error (MMSE) linear

filter described in section 4.2.2 is considered, where a linear pre-filter FR and post-filter FT are con-

sidered, such that t̃ = FTt̂ and r̂ = FRr. The filter expressions for this setup are deduced based on

section 4.2.2, and described by

FT = I;

FR = G̃SRDpSG̃H
SR(G̃SRDpSG̃H

SR + pRH̃LIRtH̃
H
LI + RnR

)−1,
(5.10)

where Rt = FTAzfRx̂AH
zf FT

H + σ2
t I.

The null-space projection filter, analyzed in section 4.2.1, is not considered for this system since the

process of beam selection is in general difficult for large dimensions. On the contrary, (5.10) is a closed-

form expression containing the channel estimates and covariance matrices of transmitted vectors and

noise, that are assumed to be known.

For the considered mode,l and for a given set of parameters, a trade-off in the e2e BER is expected.

On the one hand, a lower transmit power at the relay pR reduces the self-interference effect and dimin-

ishes any impact of the estimation errors and system impairments; on the other hand, a higher pR leads

to an improvement in the signal-to-noise ratio (SNR) levels at the destinations and hence a lower bit

error rate (BER) in the forward link channel. Thus, for a fixed source transmit power, an optimal choice

for pR that minimizes the e2e BER can be predicted.

5.2.2 Optimal Power Allocation

The level of interference suffered by the relay station depends critically on its transmit power and self-

interference channel power, as seen before, and directly perturbs the e2e and rate performance of the

relaying process. Therefore, it is desirable to find the optimal power that meets the requirements of the

system. In this case, consider that each individual link requires a minimum rate. These rates may be

found using a similar procedure to that in [42]. Thus, the expression for the transmission rate between

each source and destination pair is limited by the weakest of the two paths that establish the same link,

i.e., one of the channels that are used for communication limit the flow of information between the pairs.

This may be formulated as follows

Rk = min{RSR,k, RRD,k}, (5.11)

where RSR,k and RRD,k denote the achievable rates between the sources and the relay and between the

relay and the destinations, respectively. Firstly, in order to derive the achievable rate Rk, the received
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signal at the relay before detection is considered, which is given by equation (5.12)

yr,k =
√
pS,k(WzfFR)Tk gSRkxk +

K∑
j 6=k

√
pS,j(WzfFR)Tk gSRjxj +

√
pR(WzfFR)TkHLIt + (WzfFR)Tk nR,

(5.12)

where gSRk denotes the kth column of channel matrix from the destination to the relay including large-

scale fading effects, GSR. Consequently, the received signal at each destination link before detection is

given as follows

yd,k =
√
pRgRD

T
k (FTAzf )kx̂k +

√
pR

K∑
j 6=k

gRD
T
k (FTAzf )j x̂j + nd,k. (5.13)

where, similarly, gSRk denotes the kth column of channel matrix GRD. The expressions in equation

(5.12) and (5.13) may be seen as a known mean gain times the desired signal (first term in both equa-

tions) plus an uncorrelated effective noise term that includes channel impairment effects, interpair and

self-interference, and Gaussian noise (following terms). A valid technique commonly used in large MIMO

systems [102] is to approximate the effective noise term, the sum of the latter mentioned terms, by a

Gaussian noise component, resorting to the properties of the central limit theorem. By doing so, the

problem of computing the rates becomes simpler, while it is proven that this method gives good approx-

imations. Therefore, in order to compute each link rate, firstly the signal-to-interference-plus-noise ratio

(SINR), represented by γ, is evaluated at the relay and at the destinations. Equation (5.14) shows the

SINR at the relay station

γSR,k =
pS,kMVSR,k

pS,kVSR,k +
∑K
j 6=k pS,jMPSR,(k,j) + pRLISR,k + ANSR,k

, (5.14)

where the constants are given by the channel distributions, as MVSR,k = |E{(WzfFR)Tk gSRk}|2, VSR,k =

Var{(WzfFR)Tk gSRk}, MPSR,(k,j) = E{|(WzfFR)Tk gSRj |2}, LISR,k = E{‖ wzf
T
kFRHLIFTAzf ‖2} and

ANSR,k = σ2
nR

E{‖ (WzfFR)k ‖2}. Similarly, equation (5.15) shows the SINR at the destinations

γRD,k =
pRMVRD,k

pRVRD,k + pRMPRD,k + ANRD,k
, (5.15)

where MVRD,k = |E{gRD
T
k (FTAzf )k}|2, VRD,k = Var{gRD

T
k (FTAzf )k},MPRD,k =

∑K
j 6=k E{|gRD

T
k (FTAzf )j |2}

and ANRD,k = σ2
nD

. Thus, the rate for each channel can be easily given by

RSR,k = log2(1 + γSR,k),

RRD,k = log2(1 + γRD,k),
(5.16)

assuming the in-band full-duplex transmission to drop the 1
2 constant in each expression.

The goal is then to find the system power allocation, i.e., compute the required power transmitted by

both sources and relay, such that the desired rate for each communication pair k is guaranteed. Further-
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more, due to capacity limits of amplifiers, peak power constraints are taken into account. Considering

green communications, the target is that the overall power consumption is minimized, such that the sys-

tem uses the minimum amount of energy to work, thus, saving energy at the relay, but essentially saving

the battery of the sources, which are assumed to have mobility. In other words, the problem target can

be seen as: minimize the system energy efficiency (EE), defined as

EE =

∑K
k=1Rk

(pR +
∑K
k=1 pS,k)

, (5.17)

ensuring the necessary system rate, while using the minimum necessary amount of energy. Formally,

this can be written as an optimization problem in its canonical form, as in (5.18)

min.
pR,pS,1...pS,K

∑K

k=1
pS,k + pR,

s.t. Rk ≥ R0,k, k = 1, . . . ,K;

0 ≤ pS,k ≤ pS0,k
, k = 1, . . . ,K;

0 ≤ pR ≤ pR0
,

(5.18)

where R0,k and pS0,k
are the required rate and peak power for pair k, respectively, pR0 is the relay station

peak power, and where Rk = min{log2(1 + γSR,k), log2(1 + γRD,k)}.

Solving the problem in (5.18) involves the derivation of the channel statistics, present in the above

SINR expressions. These channel statistics would be easy to compute if the self-interference was not

present, thus, not being necessary to employ the MMSE filtering stage. However, the usage of this filter-

ing stage makes the problem highly difficult, since it involves inversion of Wishmart matrices. In terms of

the optimization itself, the cost function in (5.18) is convex, nonetheless, the rate constrain involves the

mentioned MMSE filter expression, clearly non linear with respect to the optimization variables, making

the overall problem non-convex.

For these reasons, an algorithm to solve the optimization problem is proposed, giving an approx-

imation to optimal power allocation. The algorithm is designed to be simple and computationally ef-

ficient. The main idea is to assume that the channel coefficients are constant, for some instances

of the problem, say i, which gives then a linear reformulation of the optimization problem, noting that

min{a, b} ≥ x <=> a ≥ x, b ≥ x. This reformulation is given by

min.
pR,i,pS,1,i...pS,K,i

∑K

k=1
pS,k,i + pR,i,

s.t. pS,k,iMVSR,k ≥ (2R0,k − 1) ·
(
pS,k,iVSR,k +

K∑
j 6=k

pS,j,iMPSR,(k,j) + pR,iLISR,k + ANSR,k

)
,

pR,iMVRD,k ≥ (2R0,k − 1) ·
(
pR,iVRD,k + pR,iMPRD,k + ANRD,k

)
,

0 ≤ pS,k,i ≤ pS0,k
, k = 1, . . . ,K;

0 ≤ pR,i ≤ pR0
.

(5.19)

Thus, by iteratively solving this linear program, the algorithm is capable of converging and obtaining the
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desired close solution to the optimal power allocation. At each iteration, the algorithm firstly estimates the

involved channel matrices, so that the statistics coefficients in (5.14) and (5.15) are computed for a fixed

transmit power at the sources and at the relay. This procedure is performed iteratively to average out the

channel effects. Then, the optimization problem specified in (5.19) is solved with a linear programming

solver [103]. The process is repeated again until the total number of iterations is reached. Moreover,

this value is defined to ensure that a steady power vector is obtained, and which is empirically assumed

to be close to the optimal solution when the algorithm converges (always in this case). The proposed

algorithm is summarized in 2.

Algorithm 2 Minimum Required Power Allocation to Multipair Relaying

Input: Channel observations, G̃SR, G̃RD, H̃LI. Number of iterations of the algorithm, L. Number of
iterations to average channel effects, Nit.
Output: Power at sources and relay, pR, pS,1...pS,K .
1. Initialization: Set i = 1; initialize powers pS,k,1 = pS0,k

and pR,0 = pR0 ; define L as the total number
of iterations and set Nit as the number of channel realizations per iteration.
2. Iteration i:

1) Compute channel statistics:
for Nit do

i) Obtain G̃SR, G̃RD, H̃LI, Wzf and Azf ;
ii) Compute filter FR with pS,k,i and pR,i ;
iii) Compute instantaneous rate coefficients for all k pairs: MVSR,k, VSR,k, MPSR,(k,j), LISR,k and
ANSR,k (as in (5.14)) MVRD,k, VRD,k, MPRD,k and ANRD,k (as in (5.15))

end for
2) Average to obtain channel statistics.
3) Solve the linear program (5.19) with the coefficients found in step 2) to obtain the new pS,k,i and
pR,i.
4) Set pS,k,i+1 = pS,k,i and pR,i+1 = pR,i.

3. Check: If i = L end algorithm, else set i = i+ 1.

5.3 System Performance Evaluation

This section compares the performance of the proposed filters with special emphasis on the e2e link

reliability and on the efficiency of the proposed power allocation algorithm. Assumed a symmetric system

with the same number of users K on both sides with one antenna each and M = MT = MR antennas

at the relay. Transmission and reception at the relay are conducted in the same time-slot and frequency

band, and an arbitrary processing delay d ≥ 1 is assumed, so that at time instant n on has that x̂(n) =

fr(x(n − d)). Both interference cancellation filters are given by (5.10). Without loss of generality, it

is considered that σ2
LI = 1. In the previous chapter, this value was not considered fixed, since it was

assumed that the total amount of self-interference was controlled by it. In a different fashion, this chapter

considers different powers at the relay and, thus, the level of self-interference power present at the relay

is controlled mainly by pR. Moreover, the SNR at the relay with large-scale fading effects is here defined
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as

SNRR =

∑K
k=1 βSR,kpS,k

σ2
nR

. (5.20)

5.3.1 BER Performance for Different Relay Transmit Powers

Firstly, the performance of the system in terms of BER at both the relay station and destinations, con-

sidering only small scale fading, i.e., DSR
1/2 = DRD

1/2 = I, is evaluated. This comes without loss of

generality, as it is assumed that the relay knows exactly the channels large-scale coefficients. Thus, for

a given SNRR and fixed uniform transmitted power pS,k = 1, for all k, different allocated powers at the

relay pR are evaluated, also for an increasing number of antennas M at the relay. Similar to that done is

Chapter 4, however, here the transmit power at the relay is the variable, instead of the self-interference

power. For simulation purposes, the results are compared against natural isolation (NI) (in this case

when FR = FT = I, ignoring the self-interference effect) and against a half-duplex (HD) equivalent

system. Setting the variance in the errors to the typical values in these systems, i.e., σ2
t = σ2

H = 10−3,

the curves of BER for different values of relay power pR are depicted in Fig. 5.2, for M = 16 and M = 64

antennas, five users pairs (K = 5), a SNRR value of 8 dB and using uncoded 16-QAM modulation.

It can be seen that for a large and increasing number of antennas the system using the MMSE filter

becomes more robust to the self-interference effect, exhibiting a BER performance slightly closer to HD,

for higher values of power pR, when compared to NI. However, this gain is only marginal for the antenna

set considered. Also, it is possible to conclude that the proposed system attains a gain of approximately

20 dB when compared with NI. This value is similar to what was shown for a small number of antennas,

in Fig. 4.3, only for high levels of interference.For low levels of interference, the suppression attained by

employing more antennas is considerable.
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Figure 5.2: BER performance at the relay for different numbers of antennas N , K = 5 pairs, SNRR = 8
dB and 16-QAM.
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The e2e BER in terms of the allocated power pR is also studied using the same setup as before. For

this purpose, the variance of the noise at the destinations, σ2
nd

, is set to two different typical values. The

results are shown in Fig. 5.3. It is possible to confirm that for a given configuration there is an optimal

choice for the power at the relay that minimizes the e2e BER, i.e., there is an optimal point where the

trade off between transmitting with a low relay transmit power, which decreases the self-interference

effect at the relay, and employing high transmit power, which increased the SNR at the destinations with

a cost of enhancing the self-interference effect at the relay station. Moreover, it is concluded that a larger

number of antennas attains the minimum BER with less power, i.e., the optimal transmit power at the

relay that minimizes the e2e BER is achieved for less power when the number of antennas is increased.

Also the value of the BER is naturally lower for this case. These effects were already expected from the

properties of massive MIMO transmissions, since the orthogonal properties of large dimension systems

provide an extra gain in terms of system diversity and in terms of self-interference mitigation.

−40 −30 −20 −10 0 10 20 30 40
10

−3

10
−2

10
−1

10
0

pR [dB]

B
E

R

 

 

MMSE e2e (M = 64,σ2
nd

= 1)

MMSE e2e (M = 64,σ2
nd

= 10)

MMSE e2e (M = 16,σ2
nd

= 1)

MMSE e2e (M = 16,σ2
nd

= 10)

Figure 5.3: End-to-end BER performance for different M and σ2
nd

, K = 5 pairs, SNRR = 8 dB and
16-QAM.

5.3.2 End-to-end Sum Rate

The e2e sum rate for the previous system setup, using the expression (5.11) is depicted in Fig. 5.4.

This is interesting to evaluate since the formulation of the optimization problem in section 5.2.2 depends

directly on these expressions. For a certain range of low relay power, the weakest channel is the one

from the relay to the destinations, which is limited by the destinations SNR. For high relay powers, the

weakest channel is the one from the sources to the relay, caused by the self-interference problem. These

mentioned effects may be observed in the figure, where there is an optimal choice for pR that maximizes

the rate per user, i.e., the point where the rate of both channels from the source to the relay (RSR) and
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from the relay to the destinations (RRD) achieve the same value. As it would be expected, the maximum

achievable rate per user is higher for a higher number of employed antennas at the relay, and also

requires a higher relay transmit power. This fact may be inconsistent with what has been stated before,

however, it can be explained considering that the orthogonal effect of massive MIMO brings some gain

in terms of canceling the self-interference at the relay. Therefore, with the increase in the number of

antennas, the relay station can employ higher powers in order to achieve higher rates, as seen in Fig.

5.4, hence the self-interference resilience also increases with the number of antennas.
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Figure 5.4: Achievable rate per user, for different numbers of antennas M , variance at destinations
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= 1, K = 5 users, and SNRR = 8 dB.

5.3.3 Optimal Power Allocation Algorithm

Finally, the results of the proposed optimization algorithm in section 5.2.2 are evaluated. The objective

of this optimization is to find a close-to-optimal power allocation (OPA) that meets the rate constraints

of each communication pair and minimizes the overall power of the system. For this evaluation, large-

scale fading effects are taken into consideration, more precisely by considering the large-scale gains

βSR,k and βRD,k to be independent variables generated from a log-normal distribution, as proposed in

[31, 104], with mean value m = 1 and standard deviation σ = 6 dB. Additionally, the normalized peak

power of the sources and relay are set to typical values in practical systems as pS0,k
= 3 dB and

pR0 = 10 dB, respectively. In addition, the algorithm iterative parameters are empirically defined as

Nit = 103 and L = 5, in order to ensure that the channel estimations are sufficiently good and that the

algorithm converges to a steady state value, even though it is only guaranteed to be a local minimum of

the problem due to the non-convexity of the same. Fig. 5.5 shows the evolution of the powers for source

1 and 2, and the relay power, for six iterations, where the convergence to a local solution is achieved
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for the considered algorithm parameters, and for a scenario where M = 128, where the variance at

destinations is σ2
nd

= 16, K = 10 users, SNRR = 8 dB, and where the require sum rate of the pairs is

10 Bits/s/Hz.
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Figure 5.5: Convergence of the powers in algorithm 2 for two sources and for the relay.

The performance of algorithm 2 is determined in terms of the system EE possible to achieve. The

target is to have the EE as high as possible, i.e., to use less energy in order to attain the same rate.

To that end, the optimal power allocation algorithm is evaluated with different flavors. Firstly, consider

the case where the self-interference effects are not taken into account (OPA-NI), and, therefore, the

algorithm is applied without considering the filters FR and FT to reduce the interference effect. This

case makes the problem convex, since the non-linearities in FR and FT are no longer present, so there

is no need to an iterative process and a global solution is obtained. The case where the MMSE filter

is used (OPA-MMSE) as proposed in 5.2.2 is obviously considered. The algorithm performance is also

evaluated when an optimal uniform power allocation (OUPA) is required to serve all users k, which simply

corresponds to consider pS,k = pS , for all k, in equation (5.18). Fig. 5.6 depicts the curves of average

EE, for different values of desired e2e sum rate, characterized as
∑K
k=1R0,k. The individual required

rates necessary by each user, R0,k, are taken from a discrete uniform distribution. This distribution may

take values from the set given by

R0,k ∼ Uniform
{

[0.9, 0.95, 1, 1.05, 1.1] ·
∑K
k=1R0,k

K

}
,

i.e., the rates required by each user have equal probably of being the average rate, or having 5% or

10% variation when compared to it. Thus, it can be ensured that the total rate is always that which

is pretended. Moreover, the rates are considered from a discrete distribution, since usually they are

associated with communications services, which require minimum discrete rates to ensure a certain

quality of service. As may be seen, for the same desired sum rate, the EE of OPA-MMSE is improved

significantly when compared to OUPA, while guaranteeing that no link is in outage, i.e., Rk ≥ R0,k for

all k. Furthermore, since the MMSE filter effectively reduces the self-interference effect, a lower amount

of energy is used to achieve the same sum rate when compared with OPA-NI, an effect that becomes
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more significant for higher rates.

128

64
2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

30

35

Sum Rate [bits/s/Hz]

E
n
e
rg

y
 E

ff
ic

ie
n
c
y
 [
b
it
s
/J

]

 

 

OPA-MMSE (M = 64)

OPA-NI (M = 64)

OUPA-MMSE (M = 64)

OPA-MMSE (M = 128)

OPA-NI (M = 128)

OUPA-MMSE (M = 128)
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5.4 Final Considerations

This chapter proposes a full-duplex relay that takes advantage of the orthogonal properties of massive

MIMO transmissions, in order to further suppress self-interference. In this case, a relay that applies two

stages of filtering is proposed. Firstly, inner ZF filters are used so that both detection and beamforming

are performed at the relay. Secondly, an outer MMSE self-interference suppression filter is used, while

preserving the e2e channel. The performance of the system was assessed via simulation in terms of

BER at the relay and at the destinations, where the effectiveness of the MMSE filter was confirmed for

large dimension matrices and the low complexity, high performance capabilities of linear processing in

this scenario. The derivation of the e2e achievable rate of the studied system was then provided and

a low complexity iterative algorithm to find the optimal power allocation set was proposed, that takes

into consideration large-scale fading effects, peak power constraints and the rate requirements for each

individual pair. Finally, the optimization problem results were evaluated in terms of EE, and the system

employing MMSE filtering outperformed both NI and OUPA, specially for high sum rates.
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Chapter 6

Physical Layer Network Coding for

Full-Duplex Bidirectional Relaying

(The work in this chapter will be submitted in [12] and in [13])

The exchange of information in a two-way relay network has recently gained plenty of interest in academia,

mostly due to the search for new multi-user protocols in future wireless networks. Initially, users in a two-

hop network would exchange information through a relay using four time slots (or channel resources).

Recently, the advances in network coding have reduced the number of used time slots to three, and even

to two, when considering the physical properties of the wireless medium and the properties of network

codes. Thus, this chapter incorporates physical layer network coding (PLNC) within the framework of in-

band full-duplex, with the objective of asymptotically using only one time slot to exchange data between

two terminals via a relay station.

6.1 System Model

This chapter adopts a relay system similar to the previous ones, however, in this case the terminals

transmit and receive in in-band full-duplex mode. The previous models study the full-duplex one-way

relay channel, where only the relay itself operates in full-duplex mode and only one directional com-

munication link is established. Here, the full-duplex two-way relay channel (FD-TWRC) is assumed,

i.e., a system where the relay and both terminals operate using in-band full-duplex transmissions, thus,

extending the self-interference problem to all the considered terminals.

Therefore, assume that a terminal A and a terminal B, both with one receive and one transmit

antenna, want to exchange information, which is only possible via a relay station R, since the pathloss

between them does not make possible direct link communication. As mentioned before, the exchange

of information is done in only one time slot, using the same frequency band, implying that each terminal

and the relay transmit simultaneously within the same channel resources. Thus, contrary to a typical

PLNC scheme, the multiple access channel (MAC) phase and the broadcast channel (BC) phase, i.e.,

the phases when the terminals transmit data to the relay and when the relay sends the data back,
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respectively, are merged. Consequently, consider that each terminal transmits data streams using single

antenna, xA(n) and xB(n), respectively, to the relay, which is assumed to have MR ≥ 1 antennas to

receive and MT ≥ 1 antennas to transmit. The relay receives a signal composed of the terminals’

messages after their respective channel effects and a component of self-inflicted interference, since it is

also broadcasting information for the terminals in xR(n) at the same time, as in

yR(n) =
√
pAhARxA(n) +

√
pBhBRxB(n) +

√
pRkRHRRxR(n) + nR(n), (6.1)

where hAR ∈ CMR×1 and hBR ∈ CMR×1 are the channel vectors from the terminal A and B to the

relay R, HRRCMR×MT is the self-interference channel matrix, and nR(n) accounts for the additive

noise effect at the relay. The powers used for transmitting at terminal A, B and relay R are given by

pA, pB and pR, respectively. The constant kR accounts for the residual self-interference present after

applying the studied mitigation schemes in chapter 4, as explained in the next section. At the same

time, the terminals receive the signal from the relay and are affected by the self-interference inherent in

full-duplex communications, yielding the following expressions

yA(n) =
√
pRhRAxR(n) +

√
pAkAhAAxA(n) + nA(n),

yB(n) =
√
pRhRBxR(n) +

√
pBkBhBBxB(n) + nB(n),

(6.2)

where again hRA ∈ C1×MT and hRB ∈ C1×MT represent the channel vector from the relay to each

terminal, hAA and hBB account for the self-interference at the terminals, and nA(n) and nB(n) are the

terminals’ noise component. Again, the terms kA and kB take into consideration the (always present)

residual self-interference at the terminals, which is a consequence of imperfect filtering, already dis-

cussed. Note that channel reciprocity is not assumed, i.e., the channel from a terminal to the relay is

considered to be different from the channel from the relay to the terminal, since the number of transmit

and receive antennas at the relay are not necessarily equal. Fig. 6.1 illustrates the described FD-TWRC.

Finally, the terminals and the relay employ a network coding scheme to carry information while dealing

with the self-interference, which is proposed in the following sections.
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Figure 6.1: Two-way relay channel under full-duplex transmission (FD-TWRC).
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6.2 Mitigation of the Self-Interference

The self-interference present at the TWRC has to be mitigated at all the three existing nodes in the

considered system. In Chapter 4, the performance of mitigation schemes that can cancel the effect of

the linear terms of the self-interference present at a relay station was studied. These can also be applied

to end nodes with different antennas to transmit and receive. However, the analyzed methods are not

able to effectively eliminate the interference component due to the presence of errors in the estimation

of the self-interference channel matrix and in the baseband received signal. To simplify, this chapter

takes the mitigation performance into consideration by the gain terms kR, kA and kB , which account for

the residual remaining component of the self-interference channel, when compared to the actual level

of self-interference at the terminals and at the relay. Therefore, they represent a relative mitigation gain

with respect to the case where no filtering process is applied, presented before as natural isolation (NI).

Considering that the terminals only employ one antenna to transmit and one antenna to receive (two

antenna design), feedback adaptive cancellation schemes can be used to reduce the undesired effect

of the interference component, as in section 4.3. Therefore, it is assumed here that for the relay R, the

remaining interference component is given by

HRRxR(n)− ĤRRxR(n)

=
(
H̃RR + EHRR

)(
x̃R(n) + ExR

(n)
)
− ĤRRxR(n)

, kRHRRxR(n),

(6.3)

where, as in section 4.3, H̃RR and EHRR
represent the estimation of the self-interference channel matrix

and the estimation error associated to it, respectively. The estimated transmitted signal at the relay is

x̃R(n), while ExR
(n) represents the estimation error to its true value. The term ĤRRxR(n) accounts

for the estimation of the whole interference component using time-domain and adaptive cancellation

methods. Similarly, the same is considered for terminal A and terminal B, as follows

hAAxA(n)− ĥAAxA(n) , kAhAAxA(n),

hBBxB(n)− ĥBBxB(n) , kBhBBxB(n),
(6.4)

where ĥAAxA(n) and ĥBBxB(n) are the estimations of the self-interference components at terminal A

and B, respectively. Thus, accordingly to the results in table 4.1, assuming a steady state operation of

the methods there proposed, table 6.1 summarizes the typical values of the parameters kA, kB and kR.

(kA, kB , kR)
Natural isolation Reference (0 dB)
Conventional time-domain cancellation −20 dB
Recursive least squares cancellation −30 to −40 dB
Perfect cancellation −∞ dB

Table 6.1: Gain of the feedback self-interference cancellation methods when compared to the NI case,
in dB (i.e., using 20 log10(·)).
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6.3 Denoise-and-Forward with QPSK

In order to enable each terminal to decode the information coming from its corresponding pair, the

system must employ a proper network code that separates the desired information. Thus, the most

simple and popular network coding scheme is first described in this section, the objective of which is to

make an introduction to this complex and recent topic. The following section focuses on the state-of-

the-art protocol and proposes a novel technique, and combines it with the use of massive arrays. The

problem of self-interference is addressed separately, since its mitigation scheme is designed in such a

way that it does not change the relay protocol. For that reason, the self-interference residual component

may be considered together with the thermal noise, which form the effective noise.

This network coding protocol is known as denoise-and-forward (DeF), and is here adapted from [66]

to the full-duplex operation with multiple antennas. The main idea is that the relay only needs to forward

a function of the jointly received codewords back to the terminals. Firstly, the relay removes the noise

present in the jointly received signal (both thermal and residual self-interference noise components)

and maps it to a joint codeword, upon which it performs ”some function”. This function is known at the

terminals and at the relay, and is associated with operations over the Galois Field GF(Q), where the

transmitted codewords belong to (the Galois field is always assumed to be the integers ZQ).

Therefore, terminal A and B generate a modulated signal x = M(S), where the mapper is con-

sidered as M : ZQ → DQ, and creates a one-to-one mapping from the source codewords S ∈ ZQ =

{0, 1, . . . , Q − 1} to the constellation alphabet of cardinality Q. Assuming a 4-ary alphabet and a

quadrature-phase-shift keying (QPSK) constellation, the elements from the finite field Z4 = {0, 1, 2, 3}

are mapped into a normalized QPSK constellation by meas of someM mapping. During the protocol,

the relay receives the superimposed signals from the terminals as in equation (6.1). The first step of

this protocol is to perform a joint maximum likelihood (ML) detection of the transmitted codewords (the

protocol name comes from the joint detection procedure), SA and SB , as

(ŜA, ŜB) = argmin
(s1,s2)∈Z2

Q

‖ yR(n)−
(
hARM(s1) + hBRM(s2)

)
‖2 . (6.5)

After that, the relay aims at transmitting a network coded data, SR, back to the terminals, from the

estimates (ŜA, ŜB), such that the terminals can then decode the codeword from their correspondent pair.

Therefore, the function used to generate the relay coded message is C : Z2
Q → ZQ, SR = C(ŜA, ŜB),

which is then mapped into a constellation with the relay mapperMR. The relay then transmits xR[n+d] =

MR(SR), where d represents the necessary delay for the full-duplex operation.

Finally, the terminals receive a signal containing the data sent by the relay, as in equation (6.2). Each

terminal then preforms a ML estimation of the message from the other pair, based on the used network

function, as follows

Ŝ′B = argmin
s∈ZQ

‖ yA(n)− hRAMR(C(SA, s)) ‖2,

Ŝ′A = argmin
s∈ZQ

‖ yB(n)− hRBMR(C(SB , s)) ‖2,
(6.6)
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where it is assumed that the relay has successfully jointly decoded the terminals codewords, i.e.,

C(ŜA, ŜB) = C(SA, SB).

6.3.1 Coding Schemes

In order to allow a proper exchange of information, the system should employ a suitable network cod-

ing function and used constellations, i.e., a denoising map that is capable of decoding the terminal’s

information. This denoising map depends directly on the chosen function properties, that have to allow

each terminal to correctly extract their desired information, from both the received and its own codeword.

For that to happen, there must exist a function C, that operates over the codewords finite field, and that

satisfies the following properties, known as the exclusive law [66]

C(s1, s2) 6= C(s′1, s2) for any s1 6= s′1 ∈ ZQ and s2 ∈ ZQ,

C(s1, s2) 6= C(s1, s
′
2) for any s1 ∈ ZQ and s2 6= s′2 ∈ ZQ.

(6.7)

There must also be a relay mapper,MR with the same cardinality of the generated network codeword,

SR. Consider two feasible and practical coding schemes, commonly used in coded networks for their

known simplicity and easy implementation. The first is the popular code based on the bit-wise exclusive-

or (XOR) operation, i.e.

C : Z2
Q → ZQ, C(S1, S2) = S1 ⊕ S2, (6.8)

where ⊕ represents the bit-wise XOR function (exemplified in the following section). Another possibility

is to consider the modulo-Q addition over the reals

C : Z2
Q → ZQ, C(S1, S2) = [S1 + S2]mod Q, (6.9)

i.e., in this case over a finite Galois field GF(Q), of cardinality Q (in this case ZQ). In the following section

the best coding function and mapping scheme is evaluated for the FD-TWRC.

6.3.2 Optimized Constellation Mapping

There are several possibilities to map the codewords from the terminals and from the relay, before each

transmission. In this section, only practical per-symbol PLNC is considered rather than the theoretical

schemes of per-message PLNC, proposed mainly in information theory works [71], which exploit un-

practical infinite size channel correction codes. Instead, a simple QPSK modulation forM and forMR
is assumed, which when spatial diversity is available at the relay can be optimal in terms of maximizing

the square distances between received symbols [66], thus, minimizing the error probability. This QPSK

mapping at the relay station,MR, may be also jointly optimized with the network function in the sense

that it can slightly reduce the error probability. In this two-way communication scenario, the probability

that each terminal decodes the correct message is related to the following three events:

1. Uplink error: Due to the noise and self-interference present at the relay, the ML decoded symbol
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may be wrong, i.e., the joint decoded messages C(Ŝ1, Ŝ2) 6= C(S1, S2). Note that due to the

exclusive law, if one message is wrong, the relay message will also be wrong, for example, if

Ŝ1 6= S1 and Ŝ2 = S2, C(Ŝ1, Ŝ2) 6= C(S1, S2). However, if Ŝ1 6= S1 and Ŝ2 6= S2, it may be the case

that C(Ŝ1, Ŝ2) = C(S1, S2);

2. Downlink error: Each terminal may detect a message different form MR

(
C(S1, S2)

)
due to the

existence of self-interference and thermal noise, and as result of the exclusive law, the terminals

are not able to decode the correct message from their pair;

3. Bit-error: The component of the error which is associated to the number of flipped bits in each

constellation symbol and that directly depends on the used mapping scheme.

Using a QPSK modulation (4-ary modulation) at both terminals and relay, it is possible to have

three different MR,4 mapping strategies for the two considered network functions, since there are two

alternatives in this constellation for the symbols: they can be adjacent or diagonally opposite. Also

considering the symmetry of the constellation, there are
(

4
2

)
/2 = 3 possibilities. The possible different

mapping at the relay for the two considered network functions are shown in table 6.2.

C(S1, S2) = S1 ⊕ S2 C(S1, S2) = [S1 + S2]modQ
(0,0) (0,1) (0,2) (0,3) (0,0) (0,1) (0,2) (0,3)

Pair message (1,1) (1,0) (1,3) (1,2) (1,3) (1,0) (1,1) (1,2)
(SA, SB) (2,2) (2,3) (2,0) (2,1) (2,2) (2,3) (2,0) (2,1)

(3,3) (3,2) (3,1) (3,0) (3,1) (3,2) (3,3) (3,0)
Code SR = C(SA, SB) 0 1 2 3 0 1 2 3

MappingMR,4: 1) +1 + j +1− j −1 + j −1− j +1 + j +1− j −1 + j −1− j
2) +1 + j −1− j +1− j −1 + j +1 + j −1− j +1− j −1 + j
3) +1 + j +1− j −1− j −1 + j +1 + j +1− j −1− j −1 + j

Table 6.2: QPSK possible mapping schemes for the considered network codes.

The analysis of the above mappings and network function that optimizes the bit error rate (BER) is

based on the framework developed in [65]. Also, it is only analyzed the BER performance for the terminal

A, which is similar to terminal B. Thus, the average bit error probability is then given by

PBER,A = P (Ŝ′2 6= S2) =
∑
S1∈ZQ

P (S1)
[ ∑
S2∈ZQ

P (S2)×
∑
S̃2 6=S2

P (MR,Q(C(S1, S2))→MR,Q(C(S1, S̃2)))

× dH(BQ(S2), BQ(S̃2))

log2Q

]
(6.10)

where P (S1) = P (S2) = 1/Q are the probabilities of choosing a symbol, and P (MR,Q(C(S1, S2)) →

MR,Q(C(S1, S̃2)) is the pairwise probability of decoding a message S2 from B as S̃2, when terminal’s

A message is S1. The BQ : ZQ → Zlog2 Q
2 function defines the mapping of a codeword into a binary

word, which is considered simply as direct conversion to binary with the most significant bit at the left-

hand side. Finally, the function dH : Z2 log2 Q
2 → Z gives the Hamming distance between two binary

words [79]. Following the same procedure done in [65] and defining X = MR,Q(C(S1, S2)) and X̃ =

80



MR,Q(C(S1, S̃2)), the expression in equation (6.10) may be rewritten in the following way

PBER,A = P (Ŝ′2 6= S2) =
∑
S1∈ZQ

P (S1)
[ 1

Q log2Q

∑
X∈DQ

∑
X̃ 6=X∈DQ

P (X → X̃)

× dH(BQ(x : MR,Q(C(S1, x)) = X), BQ(x : MR,Q(C(S1, x)) = X̃))
]

=
1

Q log2Q

∑
X∈DQ

∑
X̃ 6=X∈DQ

P (X → X̃)×

[ ∑
S1∈ZQ

P (S1)× dH(BQ(x : MR,Q(C(S1, x)) = X), BQ(x : MR,Q(C(S1, x)) = X̃))
]

︸ ︷︷ ︸
,NB(X→X̃)

=
1

Q log2Q

∑
X∈DQ

∑
X̃ 6=X∈DQ

P (X → X̃)NB(X → X̃).

(6.11)

The term NB(X → X̃) represents the average on bit errors when terminal A detects a symbol X̃, given

that it was supposed to receive X. The probability of a terminal to detect X̃ knowing X is the correct

symbol, P (X → X̃), may also be decomposed into P (X → X̃) = P (X → XR)P (XR → X̃), where

P (X → XR) is the probability of decoding XR knowing that X is the correct symbol to broadcast, and

P (XR → X̃) is the probability of decoding X̃ where the transmitted symbol was XR. Therefore, the

main objective is to minimize the following expression, by selecting a proper different mapping scheme

and a network function:

PBER,A = P (Ŝ′2 6= S2) =
1

Q log2Q

∑
X∈DQ

∑
X̃ 6=X∈DQ

P (X → XR)P (XR → X̃)NB(X → X̃). (6.12)

The analytical computation of (6.12) is possible by evaluating the a priori probability of the different

combinations of errors for the different mappings and network functions. To this end, it is necessary to

evaluate the 2·Q! (for the QPSK it amounts to 2·4! = 48) error component of each probability distribution.

Additionally, it is necessary to assume a normal distribution for the effective noise, which encompasses a

thermal and a self-interference component. Therefore, based on this analysis, the simulation of the BER

curves for the system described is presented for the two considered network coding function, so that it

is possible to numerically evaluate the performance of the system for different levels of both interference

and thermal noise.

Comparison of the Network Coding Schemes

Consider the system introduced in section 6.1 with MR = 4 receive antennas and MT = 1 transmit

antennas. The channels’ coefficients are generated from a complex normal distribution, hAR, hBR,

hRR ∼ CN (0, I), and hRA, hRB , hAA, hBB ∼ CN (0, 1). It is considered that the system employs feed-

back cancellation techniques to mitigate the self-interference, where kR = kA = kB = −20 dB. The

thermal noise normalized power is −10 dB and assumed to be the same in the terminals and in the relay

antennas. Fig. 6.2 depicts the BER for two different mappings and network functions, where uniform

power allocation is assumed at the relay and at the terminals, i.e., P = pA = pB = pR.
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Figure 6.2: BER performance of the different possible mapping schemes and considered network func-
tions for the FD-TWRC, with σ2

n = −10 dB and kR = kA = kB = −20 dB, with MR = 4.

It is possible to observe that the best combination of mapping and network function is to use the

map number 1) in table 6.2 with the XOR function. This fact may be explained if the symmetry present

in the denoising scheme is considered. Since map 1) corresponds to Grey mapping, the value taken

by NB(X → X̃) is minimized by the Hamming distances between codewords. Also the XOR function

symmetry between codewords present in table 6.2, reduces the joint error components P (X → XR)

and P (XR → X̃), since if a codeword is detected with an error at the relay, it is probable that it will be

mistaken with its neighbor constellation point, which is also a neighbor in the finite field. Thus, when it is

sent back to the terminals, there is a higher probability of recovering the original codeword, by having two

consecutive errors. However, by changing the mapping in the XOR function, this symmetry probability no

longer holds, and for that reason the two remaining BER curves become the worst. On the other hand,

the first two mappings,MR, joined with the [·]modQ function attain the same performance. In this case,

the two maps have different distributions in terms of joint P (X → XR) and P (XR → X̃) probabilities

conjugated with NB(X → X̃). For map 2) there are a larger number of constellation points that, when

flipped, are close to the correspondent finite field codeword. However, the term NB(X → X̃) takes lower

values in the case of map 1), which compensates for the overall probability of error. Nevertheless, the

difference between the considered curves is small (but significant, ≈ 2 dB), indicating that both network

functions may be employed in such systems without significant BER performance degradation.

6.4 Compute-and-Forward with Lattice Coding

Besides its simplicity, the DeF PLNC scheme achieves good performance both in terms of BER and rate

gain. However, its design is very basic, which gives the idea that a better scheme may be employed to

increase the system capacity. Thus, the recent developed theory of the protocol termed compute-and-

forward (CF) is studied for the case of bidirectional relaying in this section [105, 106]. Furthermore, the

use of massive MIMO is proposed and studied for the first time in such scenario.

As mentioned in chapter 2, the concept is that the relay forwards a function of the superimposed
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received symbols. However, in opposition to DeF, the network function is directly employed in the trans-

mitted constellation, i.e., there is an isomorphism between the properties of the wireless medium and the

mapped codewords with the properties given in (6.7). The main idea consists of the fact that any sum of

two transmitted symbols is itself a symbol, or is physically related to one. In practice, this isomorphism

is done by resorting to nested lattice codes, which are introduced as follows.

6.4.1 Nested Lattice Coding

As briefly introduced in Chapter 3, a lattice is a n-dimensional discrete set of points in Rn represented

by Λ = {x = Mz, z ∈ Z}, where M is called the generator matrix of the lattice. The most important

property of lattices is linearity, which guarantees that any integer combination of points of one lattice is

a point of the same lattice, i.e., ax + by ∈ Λ, for x,y ∈ Λ and a, b ∈ Z. Associated with any lattice is

the lattice quantizer QΛ, that maps a real n-dimensional vector x to the nearest point in Λ in terms of

euclidean distances, i.e., QΛ(x) = argminλ∈Λ ‖ x − λ ‖. The region that quantizes to a lattice point is

called the Voronoi region. The fundamental Voronoi region of a lattice, VΛ, corresponds to the Voronoi

region of the zero vector, i.e., VΛ = {x : QΛ(x) = 0}. Also, the operation denoted usually by modΛ

returns the quantization error with respect to Λ, given by x ∈ Rn : [x]modΛ = x − QΛ(x). These

properties as well as the ones that follow next are thoroughly described in [107, 108]. Thus, it is possible

to define a nested lattice code as being the set of all points of a fine lattice, ΛF, that falls within the

fundamental Voronoi region of a coarse lattice, ΛC, as

L = ΛF ∩ VΛC ,∈ Rn = {λ = [λF]modΛC , λF ∈ ΛF}. (6.13)

These nested lattice codes are used in this context because they achieve the capacity of the additive

white Gaussian noise (AWGN) channel [69] and obtain high rates in the case of multiple access channels

[57]. To do so, these codes are generated from low-density parity-check codes (LDPC) over finite fields,

by applying the methods designated in literature as construction A or construction D, in order to design

a fine lattice with larger dimensions [71]. In the context of this work, only a nested lattice code known a

priori is assumed, and with simple properties, which facilitates the process of simulation and analysis.

To that end, consider that terminal A and B want to exchange messages, or codewords, SA and SB ,

respectively, assumed to belong to a prime finite field, FnQ (with Q prime). Initially, each terminal maps its

message to the same nested lattice constellation. The mapping process is done by means of a function

φ(·), that translates the isomorphism between codewords and constellation points, and is defined as

φ : FnQ → L = ΛF ∩ VΛC(∈ Rn),

SA, SB → xA,xB.
(6.14)

Moreover, the sequence of messages mapped to lattice points, present in xA(n) and xB(n), are con-

sidered to have normalized power, i.e., 1
n ‖ xA ‖2≤ 1

n ‖ xB ‖2≤ 1. As previously described, the relay

and the terminals experience complex channels. Thus, to adapt the transmit sequences to this kind of

channel, a two dimensional orthogonal lattice (n = 2) is considered, which ”lives” in the complex plane,
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i.e., there is a simple conversion from R2 to C. This lattice is known in the literature as Gaussian lattice,

proposed in [71], and is defined as

ΛG = {x ∈ C : x = cR · z1 + jcI · z2; z = (z1, z2) ∈ Z2 and c1, c2 ∈ R}. (6.15)

In order to define the nested lattice code, the fine lattice, ΛF ∈ ΛG, is first considered to be generated

with parameters cR = 2 and cI = 3, while the coarse lattice, by the definition in equation (6.13), is

consequently given by ΛC = Q · λF,∈ ΛG, i.e., it has parameters cR = 6 and cI = 9. Thus, it is

possible to obtain a nested lattice codebook in the complex field C, denoted as LG, where the function

that gives the isomorphism between codewords and constellation points, φ, is easily obtained in [71].

Therefore, the use of this nested lattice code is assumed, for codebook with length Q = 3 and dimension

n = 2, where codewords Z2
3 = {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2)} are mapped into the points

{0+0j, 0+3j, 2+0j, 2+3j, 2−3j,−2+3j,−2−3j}, respectively, by means of φ. Fig 6.3 depicts the used

nested lattice code with the codewords near to their corresponding constellation point (the mapping is

the same for each box). Although the codebook length is small, it is possible to easily change the

considered lattice so that Q can take higher values. Finally, the considered protocol for bidirectional

relaying in an in-band full-duplex system that uses the described nested lattice to carry the desired

information by each source is following described.
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Figure 6.3: The used Gaussian nested lattice code with mapping function Z2
Q=3 → C : x = φ(S).

6.4.2 Relaying Protocol for the TWRC

In the first stage of communication, the relay receives a combination of the terminals’ messages, i.e.

xA = φ(SA) and xB = φ(SB), plus self-interference and thermal noise, as in equation (6.1). For the

CF protocol assume first that MT = MR = 1. The relay aims to detect an integer linear combination

of the transmitted terminal symbols. These symbols should reach the terminal changed only by real
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coefficients, i.e., the protocol is only designed to tolerate a scaling in the lattice points and can not

handle any phase rotation of the lattice structure. To combat this problem, it is assumed that each

terminal has the knowledge of their correspondent channel, so that they can employ a transmit gain

in order to cancel the complex effect of it. This gain should be normalized in order not to change the

terminals’ transmit power. Therefore, having each terminal transmitting with unit power, (6.1) can be

rewritten for this case as

yR(n) = hAR

( h∗AR
< hAR >

xA(n)
)

+ hBR

( h∗BR
< hBR >

xB(n)
)

+ ñ(n),

= gAR · φ(SA) + gBR · φ(SB) + ñ(n),

(6.16)

where the < · > represents the norm of a complex number, ñ(n) accounts for the equivalent Gaussian

noise (since the thermal noise is assumed to be Gaussian, as well as the residual self-interference), and

gAR =
(
hARh

∗
AR

<hAR>

)
and gBR =

(
hBRh

∗
BR

<hBR>

)
are the equivalent real channel gains. Also, pA = pB = pR = 1

is assumed. As already stated, the target of the relay is to recover an integer linear combination of the

original transmitted symbols and map it back to a nested lattice code point, in the form of

v = [aA · xA + aB · xB ]modΛC , (6.17)

where xA, xB ∈ LG, belong to the nested lattice code, and aA, aB ∈ Z are freely selected by the relay

to quantize the equivalent real channel coefficients, which form the so-called lattice network code. The

latter tries to approximate the channel output to a point in the nested lattice constellation, i.e., it tries

to interpret the effect of a real channel by means of linear integer combinations. To this end, the relay

employs the following steps, as detailed in [67]:

Processing Stage at the Relay for each yR(n):

1) Scale the received relay signal, using the MMSE scaling factor: ỹR = α · yR;

2) Quantize ỹR to the closest fine lattice point: QΛF(ỹR);

3) Perform modulo operation with respect to the coarse lattice to obtain back a point in the nested

lattice code: xR = [QΛF(ỹR)]modΛC .

The first step consists of scaling the received signal, in a way that is possible to reduce the error

when approximating the real equivalent channel by an integer one. Consider that a = [aA, aB ] is the

network code that tries to approximate the channel vector g = [gAR, gBR]. The estimated signal at the

relay depends on the scaling factor α and on the chosen network code a. This signal may be written in

the following formulation:

xR = [QΛF(ỹR)]modΛC

= [QΛF([α · yR]modΛC)]modΛC

= QΛF([α · (gAR · xA + gBR · xB + ñ)]modΛC)

= QΛF([aA · xA + aB · xB + (α · gAR − aA) · xA + (α · gBR − aB) · xB + α · ñ]modΛC)

= QΛF([v]modΛC + [(α · gAR − aA) · xA + (α · gBR − aB) · xB + α · ñ]modΛC),

(6.18)
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where v is the desired relay signal. The first step comes from the fact that the quantization operation of

a point to a lattice is interchangeable with the modulo function over the same lattice, while the remaining

steps are straightforward expression substitutions [107]. Thus, the relay effective noise is

‖ (α · gAR − aA) · xA + (α · gBR − aB) · xB + α · ñ ‖2= (α · gAR − aA)2 + (α · gBR − aB)2 + α2σ2
ñ,

where independently generated symbols and a total noise-plus-interference power level of σ2
ñ is as-

sumed. The minimum mean square error (MMSE) scaling factor is consequently obtained such that the

equivalent noise power is minimized with respect to α, given a 6= 0 in such a way that equation (6.7) is

satisfied. As shown in [67], it is possible to obtain

α =
γ · gaH

1 + γ · ggH
, (6.19)

where γ represents the signal-to-interference-plus-noise ratio (SINR) and is computed at the relay as

γ =
g2
AR+g2

BR

kR+σ2
n

. The choice of the optimal network code is also derived based on (6.18), by means of

maximizing the total amount of information flow, which is equivalent to minimizing the equivalent noise

power with respect to a. As demonstrated by Feng et al. [71], this corresponds to minimize the term

aMaH , where matrix M is given by

M = γ · I− γ2

γ · ggH + 1
· gHg.

In order to do so, observing that M is an Hermitian and positive-definite matrix, one may perform a

Cholesky decomposition, i.e., M = LLH , where L is a lower triangular matrix, to reformulate it as

aFeng = arg min.
a6=0

‖ aL ‖, (6.20)

solved using the Fincke-Pohst algorithm for finding the solution (similar to a Sphere Decoder)[108].

After processing the received information, the relay sends back to the terminals xR(n). Upon recep-

tion of this signal, after passing through a wireless channel as in (6.2), each terminal employs the follow-

ing steps to extract the desired information from the received lattice point and from its own message:

Processing Stage at Terminal A (similar for B):

1) Decode the relay transmitted signal, taking into consideration the complex channel effect, using the

ML detector for the nested lattice code: x̂R = arg minλ∈ΛF∩VΛC
‖ yA − hRAλ ‖;

2) Map the received information back to the finite field:

First component u1 = φ−1(R{x̂R}) = [qASA,1 + qBSB,1]modQ and

second component u2 = φ−1(I{x̂R}) = [qASA,2 + qBSB,2]modQ (where the coefficients qA, qB are

naturally given by qA = [aA]modQ and qB = [aB ]modQ);

3) Subtract own information: wA,1 = [u1 − qASA,1]modQ = qBSB,1 and

wA,2 = [u2 − qASA,2]modQ = qBSB,2;

4) Remove channel integer effect over the finite field, qB , to obtain ŜB = (ŜB,1; ŜB,2).
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where R{·} and I{·} take the real and imaginary part of a complex number. respectively.

The process described above allows each terminal to extract the desired information from the linear

combination of the transmitted signals and the knowledge of the network code. However, the information

theoretic deduction of the optimal network code, in (6.20), does not take into consideration practical

details for the TWRC. Note that the correct recovering of the messages dependents on the integer

coefficients qA, qB , which reflect the channel effect in the finite field. Therefore, none of them should be

zero in order to ensure that no message is lost during the terminal’s decoding process. As proposed

by Mejri in [105], by not allowing qA, qB to be equal to zero, the performance of CF improves drastically.

This is done by changing the problem in (6.20), to include the aforementioned constraint

aMejri = arg min.
qA=[aA]modQ 6=0,qB=[aB ]modQ 6=0

‖ aL ‖ . (6.21)

The following simulation work uses a brute force approach for finding both optimal network code for

problem 6.20 and 6.21, since only few iterations are need for the considered parameter.

Performance with Estimation Errors

The symbol error rate (SER) of the considered bidirectional relaying CF protocol is evaluated, for a single

antenna system. It is noted that for the isomorphism between constellation points and codewords, there

is the need to have a prime finite field, thus, a comparison is not made with the DeF in terms of BER.

This point is actually one of the main drawbacks of this protocol, which were initially developed in the in-

formation theory abstraction and still lacks some implementation details. Nevertheless, the performance

of the CF scheme is compared with an equivalent direct machine-to-machine (m2m) transmission, i.e.,

direct communication between the two terminals with ML detection for the same nested lattice constel-

lation. Additionally, the above presented network codes and the effect of errors in the estimations of the

channels are compared, since the CF proposed protocol directly depends on it. To that end, assume

symmetry for the channel coefficients, i.e., hA = hAR = hRA and hB = hBR = hRB , and also that each

channel coefficient has Rayleigh fading distribution with unitary normalized power. Furthermore, it is

considered that each terminal and the relay only have access to erroneous estimations of the channel,

modeled with an additive perturbation EhA
, EhB

, both drawn from CN (0, σ2
h), so that ĥA = hA + EhA

and

ĥB = hB + EhB
. Fig. 6.4 depicts the SER curves for the considered protocol in such scenario and

for different values of self-interference and thermal noise power. Considering that k = kR = kA = kB

and that nR, nA and nB have entries generated from a complex Gaussian distribution with normalized

power σ2, the total interference-plus-noise power at each antenna is defined as σ2
eq = k + σ2. It can

be observed that the network code proposed by Feng (blue curve) stalls for high values of noise power,

since for network codes that are multiple of the finite field size is not possible to recover the desired

messages. By introducing the correction proposed by Mejri, the performance of the protocol is dras-

tically improved when there are no estimation errors (green curve). This curve actually has the same

diversity of a direct m2m transmission with the ML detector (black curve), i.e., the terminals exchanging

directly data without using the relay, which may be regarded as the asymptotic target for any network
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Figure 6.4: SER performance of the bidirectional CF protocol for different values of σ2
eq and for different

powers of the channel estimation errors σ2
h.

scheme. Moreover, the shift between these two curves is caused mainly by the error at the relay from

the erroneous approximation of a real channel by a integer one. When introducing estimation errors,

the remaining SER curves start to initially tend to a floor stage and then tilt up towards higher values of

SER. Since the protocol requires perfect channel state information (CSI), this unknown error component

is not taken into consideration by the network code and, as expected, the system performance rapidly

deteriorates when the errors in the channel estimations get large, which increases for high values of

SINR due to the MMSE scaling coefficient α.

6.4.3 The Effect of Massive MIMO

The presented CF PLNC scheme for the TWRC can in fact be improved by employing massive antenna

arrays at the relay station. For this reason, a PLNC system similar to the one above is proposed,

however, each terminal now hasNT transmit and receive antennas. The relay uses severalMR antennas

to receive, considered much larger than NT , and has MT = NT antennas to transmit the information

back to the terminals. Fig. 6.5 shows the considered relaying system for NT = 2. The following

described scheme involves three major techniques that, to the best of our knowledge, are put together

for the first time: full-duplex, PLNC with CF, and massive MIMO.

Assume that each terminal independently generates several streams of data, SA,i, SB,i ∈ Z2
3, for

each antenna i = 1, · · · , NT , which are then mapped accordingly to the considered nested lattice code

as in (6.14), to form xA,xB ∈ CNT×1(∈ LNT×1
G ). These symbols reach the relay and add up in the

following manner

yR(n) = HARxA(n) + HBRxB(n) + kRHRRxR(n) + nR(n)

= HARxA(n) + HBRxB(n) + ñR(n),
(6.22)

where HAR ∈ CMR×NT and HBR ∈ CMR×NT , HRR ∈ CMR×MT , and where ñR(n) ∈ CMR×1 accounts

for both residual self-interference and thermal noise term. The idea is to explore the orthogonality

between large dimension matrices to extract an independent combination of each transmitted stream.
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Figure 6.5: Massive MIMO two-way relay channel with full-duplex operation, for NT = 2.

Thus, the relay wants to obtain an independent linear combination of each antennas stream of transmit-

ted data, now reformulated as

[
DAxA(n) + DBxB(n)

]
modΛC , (6.23)

where DA,DB ∈ ZNT×NT are diagonal matrices with integer entries forming the network code.

As previously mentioned, the nature of space-time communications distort the received signal, both

in terms of inter-pair interference (IPI), but also in terms of a rotation in the received constellation.

For these reasons, in order to recover the information as in (6.23), one relies on the massive MIMO

orthogonality property to ensure a good performance of the linear detection filters. Therefore, instead

of employing a transmit gain, it is proposed that the relay first processes the received signal with zero

forcing (ZF) filters such that the interference is removed. Equation (6.24) shows the procedure, where it

is performed and added the output of a ZF filter for channel HAR and channel HBR,

yP(n) =HAR
†yR(n) + HBR

†yR(n)

=(HH
ARHAR)−1HH

ARyR(n) + (HH
BRHBR)−1HH

BRyR(n)

=
(
HAR

†HARxA(n) + HBR
†HBRxB(n)

)
+
(
HBR

†HARxA(n) + HAR
†HBRxB(n)

)
+
(
HBR

† + HAR
†)ñR(n)

= DAxA(n) + DBxB(n)︸ ︷︷ ︸
desired component

+ ñ?R(n)︸ ︷︷ ︸
equivalent total noise

(6.24)

where yP(n) ∈ CNT×1 is the signal that is given to the CF protocol. Thus, by employing this technique

with perfect CSI, it is possible to actually obtain a perfect sum of the terminals transmitted message, i.e.,

having an unitary network code (DA = DB = I). However, the total amount of interference and noise

are the main obstacle to this procedure. The equivalent total noise in (6.24) is split in several terms for

analysis purposes:

1. Cross terms interference from the proposed protocol in (6.24):
(
HBR

†HARxA(n)+HAR
†HBRxB(n)

)
;

2. Self-interference noise term:
(
HBR

† + HAR
†)kRHRRxR(n);

89



3. Thermal noise term:
(
HBR

† + HAR
†)nR(n);

One may initially think that the interference and noise terms may be the impossible to overcome in the

proposed system. Nonetheless, the massive MIMO properties ensure that independent and randomly

generated infinite dimension matrices are orthogonal. Therefore, the first term of interference becomes

then

HBR
†HAR → 0,HAR

†HBR → 0, as MR →∞ (6.25)

which in practice does not pose any problem for large MR antennas [31, 47]. The second term, self-

interference, is treated with proper techniques that are translated into kR, and is also mitigated with

the orthogonality property between
(
HBR

† + HAR
†) and HRR. Finally, the thermal noise term is also

reduced with the same principle, which is the one that guarantees a close to optimal performance with

a ZF detector when using massive MIMO transmissions [46]. Thus, the CF protocol stages described

in 6.4.2, in this case considering a unitary code, are adapted to massive MIMO relaying, in order to

process each received stream of data, yP,i(n) = xA,i(n)+xB,i(n)+ ñR,eq,i(n), for each transmit antenna

i = 1, · · · , NT , and each terminal received symbol

yA(n) = HRAxR(n) + ñA(n), yB(n) = HRBxR(n) + ñB(n), (6.26)

where HRA ∈ CNT×MT and HRB ∈ CNT×MT , and where ñA, ñB ∈ CNT×1 take into consideration

the residual self-interference and thermal noise components, in the same previous fashion. Finally, the

protocol is summarized as the following procedure:

Procedure 3 PLNC Scheme for Massive MIMO Relaying

Processing stage at the relay for each yR(n):

1) Zero forcing process of the received signal: yP(n) = HAR
†yR(n) + HBR

†yR(n);

for i = 1, · · · , NT do

2) Scale the processed relay signal, using the MMSE scaling factor yP,i: ỹP,i = αi · yP,i;
3) Quantize ỹP,i to the closest fine lattice point: QΛF(ỹP,i);

4) Perform modulo operation with respect to the coarse lattice to obtain back a point of the nested

lattice code: xR,i = [QΛF(ỹP,i)]modΛC :

end for

5) Transmit the signal xR(n) = [xR,1, · · · , xR,NT
];

Processing stage at terminal A (similar for B):

1) Decode the relay transmitted signal using the ML detector for the nested lattice code:

x̂R = arg minλ∈(ΛF∩VΛC )NT ‖ yA −HRAλ ‖ ;

for i = 1, · · · , NT do

2) Map the received information back to the finite field: u1,i = φ−1(R{x̂R,i}) = [SA,1,i+SB,1,i]modQ

and u2,i = φ−1(I{x̂R,i}) = [SA,2,i + SB,2,i]modQ (where here qA = 1, qB = 1);

3) Subtract own information to obtain: ŜB,1,i = [u1,i−SA,1,i]modQ and ŜB,2,i = [u2,i−SA,2,i]modQ;

end for

4) Obtain ŜB,i = (ŜB,1,i; ŜB,2,i) for i = 1, · · · , NT .
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SER for Different Numbers of Receiving Antennas

The proposed PLNC scheme for massive MIMO full-duplex relaying relies on the orthogonal properties

between all involved channel matrices, which are represented in equation (6.25). For this reason, it

is interesting to evaluate the effect of having a finite number of receive antennas at the relay, instead

of the asymptotic and theoretical case of having infinite antennas. To that end, consider that each

channel has entries generated from a Rayleigh fading distribution, i.e., HAR,HBR,HRA,HRB,HRR

entries are generated from distribution CN (0, 1). The average SER at both terminals is depicted in Fig.

6.6, for different number of antennas: the SER is depicted against the equivalent noise power, which

considers a fixed self-interference mitigation gain (as in section 6.2) and varying thermal noise, i.e.,

for the relay assume that ñR(n) ∼ CN (0, σ2
eq IMT×MT

) and that each terminal has ñA(n), ñB(n) ∼

CN (0, σ2
eq INT×NT

).
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Figure 6.6: SER performance of the bidirectional CF massive MIMO protocol for different numbers of
relay receiving antennas MR and different interference and noise power levels σ2

eq.

The asymptotic effect mentioned above becomes clear in Fig. 6.6. For a low number of antennas, the

orthogonal properties of large dimension arrays do not hold. For that reason, for the considered number

MR of antennas at the relay, the SER curves stall at an error floor that decreases with MR and is

caused by the three aforementioned interference components that are not canceled by the properties of

employing massive arrays. Nevertheless, when a larger number of antennas is considered, for example

MT = 500, the effect of imperfect cancellation starts to be negligible, as the matrices orthogonal property

is valid for a large range of σ2
eq. Thus, the noise floor in this case appears for acceptable values of SER,

and the curve tends to the asymptotic case of perfect interference cancellation, i.e., MR = ∞ (in this

case simulated withMR = 1000 and by subtracting the interference terms from the relay received signal).
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Channel Estimation Errors Effect in the SER

Another interesting aspect is to evaluate how imperfect CSI may deteriorate the protocol performance.

To that end, consider the above described system, however, assume that the relay only has access to

erroneous estimations of the channel matrices, i.e., each entry of the channel matrices is known at the

relay apart from some error component. Thus, it is assumed for all channel matrices that H = H̃ + EH,

where the error component is generated from a complex Gaussian distribution as CN (0, σ2
H), and where

σ2
H accounts for the estimation error power. Fig. 6.7 depicts the average SER performance for different

values of equivalent noise, different numbers of antennas and different estimation errors power. The
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Figure 6.7: SER curves of the CF massive MIMO protocol for different numbers of relay receiving anten-
nas MR, different interference power levels σ2

eq and different channel estimation errors power σ2
H.

estimation errors in the channel matrices are still a major draw back in the CF protocol for massive

MIMO. For MR = 150 antennas (blue curves), when the relay does not know the channel matrices

exactly, the SER curves for σ2
H = 10−5 and for σ2

H = 10−3 tend error floor. This is mainly caused by

the error propagation at the ZF filtering stage, that limits the performance in the presence of imperfect

channel estimations, since DA = DB = I is no longer obtained, i.e., a unitary network code is never

achieved. In this case, the network code becomes a complex number, introducing a phase rotation in

the lattice constellation that cannot be handled by the CF scheme. The interference terms enumerated

earlier are not affected by these errors, since the orthogonality between large matrices is blind to their

content, if randomly distributed. Also, when a larger number of antennas is considered, as the green

curves show for MR = 300 and for the same estimation errors power, the error floor disappears for the

depicted SER values. This effect is also explained by the orthogonal property between large dimension

arrays, which can reduce the propagation of the errors to the ZF filtering. However, these SER curves

will eventually stall at a error floor for lower values of SER. When increasing the number of antennasMR,

the SER stalling value decreases to a point that is targeted in wireless communications likes (≈ 10−3).
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6.5 Bidirectional Rate Analysis

This section derives the instantaneous and average bidirectional sum rate for the specific case where

in the system model defined in Fig. 6.1, NT = 1, MT = 1, and for any MR, i.e., a single-input multiple-

output (SIMO) scenario. This analysis assumes that CF and DeF protocols achieve the same highest

rate, thus, it presents only an upper bound for the proposed system capacity. Nevertheless, this ap-

proach provides good results for scenarios such as these [75, 105]. Also, there is global channel state in-

formation (GCSI) at the relay, i.e., the relay has perfect knowledge of all channels. The final goal is to op-

timize this sum rate, that involves solving a non-concave problem, similarly to that done in section 5.2.2.

6.5.1 Instantaneous Rate

Firstly, the instantaneous SINR (denoted again by γ) at all elements of the system is obtained. Consid-

ering the relay model in equation (6.1) and assuming that MT = 1, it is possible to show that

γR =
E{pAx∗A(n)hH

ARhARxA(n)}+ E{pBx∗B(n)hH
BRhBRxB(n)}

E{k2
RpRx

∗
R(n)hH

RRhRRxR(n)}+ E{nH
R(n)nR(n)}

=
pAh∗ARhARE{x∗A(n)xA(n)}+ pBhH

BRhBRE{x∗B(n)xB(n)}
k2
RpRh∗RRhRRE{x∗R(n)xR(n)}+ E{nH

R(n)nR(n)}
=
pAhH

ARhAR + pBhH
BRhBR

k2
RpRhH

RRhRR + σ2
nR

, (6.27)

where the relay knows exactly the channel vectors, and where the transmitted vectors are normal-

ized, i.e., a normalized constellation to transmit is used, thus, E{x∗A(n)xA(n)} = E{x∗B(n)xB(n)} =

E{x∗R(n)xR(n)} = 1. The noise power is σ2
nR

. Furthermore, each terminal’s individual contribution to the

relay SINR is consequently given by

γR,A =
pAhH

ARhAR

k2
RpRhH

RRhRR + σ2
nR

, γR,B =
pBhH

BRhBR

k2
RpRhH

RRhRR + σ2
nR

. (6.28)

To compute the SINR at the terminals, consider the same procedure as above. Taking into consideration

(6.2), it is possible to write the following expressions

γA =
E{pRx∗R(n)h∗RAhRAxR(n)}

E{k2
ApAx

∗
A(n)hAA

∗hAAxA(n)}+ E{n∗A(n)nA(n)}
=

pRh
∗
RAhRA

k2
ApAh

∗
AAhAA + σ2

nA

,

γB =
E{pRx∗R(n)h∗RBhRBxR(n)}

E{k2
BpBx

∗
B(n)h∗BBhBBxB(n)}+ E{n∗B(n)nB(n)}

=
pRh

∗
RBhRB

k2
BpBh

∗
BBhBB + σ2

nB

.

(6.29)

Then, based on the SINR computed expressions, the rates for each path of the FD-TWRC are derived.

Firstly, consider the transmission of information from terminal A and B to the relay. Since the protocols

under consideration employ a non-linear mechanism of detection that depends on both received signals,

the sum rate at the relay is defined by the contributions from both terminals, as in the equation

RtotalR = log2(1 + γR) = log2

(
1 +

pAhH
ARhAR + pBhH

BRhBR

k2
RpRhH

RRhRR + σ2
nR

)
. (6.30)

In order to evaluate each terminal’s contribution to the rate at the relay, it is necessary to separate the

SINR components from A and B. Thus, the contribution to the rate in 6.30 from A and from B is given
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by equations (6.31) and (6.32), respectively.

RA,R = log2(1 + γR,A) = log2

(
1 +

pAhH
ARhAR

k2
RpRhH

RRhRR + σ2
nR

)
. (6.31)

RB,R = log2(1 + γR,B) = log2

(
1 +

pBhH
BRhBR

k2
RpRhH

RRhRR + σ2
nR

)
. (6.32)

Similarly, considering the information that follows from the relay to the terminals, the instantaneous

rate at terminal A and terminal B, is derived as

RR,A = log2(1 + γA) = log2

(
1 +

pRh
∗
RAhRA

k2
ApAh

∗
AAhAA + σ2

nA

)
,

RR,B = log2(1 + γB) = log2

(
1 +

pRh
∗
RBhRB

k2
BpBh

∗
BBhBB + σ2

nB

)
.

(6.33)

To compute the bidirectional rates between the two terminals, i.e., the amount of information flowing

from A to B, and vice-versa, assume that the flow of information is always limited by the worst of the

two channels. As demonstrated in [31, 64] and in most literature, the communication rate between the

terminals is necessarily limited by the smaller of the two rates: the rate between each terminal and the

relay or the rate between the relay and each terminal. Therefore, the rate of the stream of information

that follows from terminal A to terminal B is given by

RA,B = min{RA,R, RR,B} = min{log2(1 + γR,A), log2(1 + γB)} = log2(1 + min{γR,A, γB}). (6.34)

where the last step comes from the fact that log2(1 + x) is an injective and monotonically increasing

function for x ∈ R+. For the stream of information from B to A it is likewise obtained

RB,A = min{RB,R, RR,A} = min{log2(1 + γR,B), log2(1 + γA)} = log2(1 + min{γR,B, γA}). (6.35)

Finally, the total rate of the system (the bidirectional sum rate) is computed by adding the two bidirectional

rates above, as expressed in equation (6.36)

RΣ = RA,B +RB,A

= log2(1 + min{γR,A, γB}) + log2(1 + min{γR,B, γA})

= log2

(
1 + min

{ pAhH
ARhAR

k2
RpRhH

RRhRR + σ2
nR

,
pRh

∗
RBhRB

k2
BpBh

∗
BBhBB + σ2

nB

})
+

+ log2

(
1 + min

{ pBhH
BRhBR

k2
RpRhH

RRhRR + σ2
nR

,
pRh

∗
RAhRA

k2
ApAh

∗
AAhAA + σ2

nA

})
.

(6.36)

6.5.2 Ergodic Rate

Besides the instantaneous sum rate, the ergodic rate for the system presented above is evaluated.

Therefore, consider that the channel distribution is known at the relay and that all channels’ coefficients

are realizations of a Rayleigh distribution with zero mean and unitary normalized variance, i.e., the

channel elements are drawn from CN (0, 1), as has been assumed for simulation purposes. Thus, taking
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into account (6.34) and (6.35), the ergodic rate for each stream of data is stated as follows

R̃A,B = min{R̃A,R, R̃R,B} = min{log2(1 + E{γR,A}), log2(1 + E{γB})} = log2(1 + min{γ̂R,A, γ̂B})

= log2

(
1 + min

{ pAMR

k2
RMRpR + σ2

nR

,
pR

k2
BpB + σ2

nB

})
,

(6.37)

R̃B,A = min{R̃B,R, R̃R,A} = min{log2(1 + E{γR,B}), log2(1 + E{γA})} = log2(1 + min{γ̂R,B, γ̂A})

= log2

(
1 + min

{ pBMR

k2
RMRpR + σ2

nR

,
pR

k2
ApA + σ2

nB

})
,

(6.38)

where the average of the channels are E{hH
ARhAR} = E{hH

BRhBR} = E{hH
RRhRR} = MR and

E{h∗RAhRA} = E{h∗RBhRB} = E{h∗AAhAA} = E{h∗BBhBB} = 1. Finally, the ergodic sum rate for the

system under consideration is simply given by R̃Σ = R̃A,B + R̃B,A, as above.

6.6 Power Allocation Scheme

The power allocation for similar systems to the one under consideration may take several different fla-

vors, depending naturally on each system goal. For instance, one may employ uniform power in all

elements, i.e., having pA = pB = pR and then find a power level where the sum rate is instantaneous, or

on average, above a certain threshold. Also, assuming different transmit powers, a desired rate for the

flow of information may be set, while enhancing the system energy efficiency, as done in section 5.2.2.

The approach employed in this section is to assume a greedy position, i.e., try to achieve the maximum

bidirectional sum rate of the system, under power constraints only due to amplifiers’ limitations.

6.6.1 Sum Rate Maximization

The maximum sum rate would be achieved with peak powers in a scenario without self-interference.

However, this effect at the relay and at the terminals makes the problem of allocating powers non-trivial.

Therefore, assuming that the peak power of the terminal A is PA,max, of the terminal B is PB,max and of

the relay is PR,max, writing a formulation of such problem in a canonical form, for the instantaneous and

ergodic case, yields

max.
pR,pA,pB

RΣ (or R̃Σ)

s.t. 0 < pA ≤ PA,max; 0 < pB ≤ PB,max; 0 < pR ≤ PR,max;

(6.39)

which can be then expanded to

max.
pR,pA,pB

log2

(
1 + min

{ pACAR
pRCRR + σ2

nR

,
pRCRB

pBCBB + σ2
nB

})
+ log2

(
1 + min

{ pBCBR
pRCRR + σ2

nR

,
pRCRA

pACAA + σ2
nA

})
s.t. 0 < pA ≤ PA,max; 0 < pB ≤ PB,max; 0 < pR ≤ PR,max;

(6.40)
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where it is defined that CAR = hH
ARhAR, CBR = hH

BRhBR, CRR = k2
RhH

RRhRR, CRA = h∗ARhRA,

CRB = h∗RBhRB , CAA = k2
Ah
∗
AAhAA and CBB = k2

Bh
∗
BBhBB , for the instantaneous coefficients. For the

ergodic case CAR = CBR = MR, CRR = k2
RMR, CRA = CRB = 1, CAA = k2

A and CBB = k2
B .

6.6.2 Fair Sum Rate Maximization

As optimization problem (6.40) is formulated, the transmit powers of each terminal and relay cannot

be zero, however, one terminal may get a transmit power very close to zero, which would destroy the

exchange of information. In that case, the sum rate would be maximized, nevertheless, only one link

would be active, which is not desirable in the definition of the TWRC and as the problem has been

presented. For that reason, the optimization problem in (6.39) is reformulated to avoid this case, by only

adding one extra constraint that forces a linear relation between transmit powers at the terminals. Thus,

equation (6.41) reformulates the problem to ensure the two flows of information, as follows

max.
pR,pA,pB

RΣ (or R̃Σ)

s.t. 0 < pA ≤ PA,max; 0 < pB ≤ PB,max; 0 < pR ≤ PR,max;

(1− %)pB ≤ pA ≤ (1 + %)pB ;

(6.41)

where the utility function is the same as in section 6.6.1, and where % is a constant set a priori to control

the power imbalance at the terminals, from now on referred to as unbalance factor.

6.6.3 Proposed Solution

Before starting to solve any of the problems stated in (6.40) or (6.41), note that both problems are clearly

non-concave, since their utility function, which is given by function r(pA, pB , pR), as

r(pA, pB , pR) : R3
+ → R : r(pA, pB , pR) = log2

(
1 + min

{ pACAR
pRCRR + σ2

nR

,
pRCRB

pBCBB + σ2
nB

})
+

+ log2

(
1 + min

{ pBCBR
pRCRR + σ2

nR

,
pRCRA

pACAA + σ2
nA

})
,

(6.42)

is not a concave function (necessary to make a maximization problem concave [109]). The constraints

of both formulations are linear functions of the optimization variables and do not pose any problem.

Therefore, the idea is to reach a solution for problem (6.40) based on an algorithm, which can then be

used to solve problem (6.41), only by adding the unbalance factor.

To do so, start by introducing two epigraph variables, s and t, as in

max.
pR,pA,pB ,s,t

log2(1 + s) + log2(1 + t),

s.t. 0 < pA ≤ PA,max; 0 < pB ≤ PB,max; 0 < pR ≤ PR,max;

(s · pR)CRR + s · σ2
nR
≤ pACAR; (s · pB)CBB + s · σ2

nB
≤ pRCRB ;

(t · pR)CRR + t · σ2
nR
≤ pBCBR; (t · pA)CAA + t · σ2

nA
≤ pRCRA,

(6.43)
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that replace the minimum terms in the utility function [110], where it is noted again that min{a, b} ≥ x <=>

a ≥ x, b ≥ x, after performing some basic manipulations. This reformulation in (6.43) shows a concave

utility function, in this case a sum of two concave functions (since log(1+x) is concave for x > −1, x ∈ R).

Nevertheless, it only transfers the difficulty of solving (6.43) to the constraints in the last two lines of

(6.43), in this case in the form of bilinear terms. Thus, isolating those bilinear terms, a new reformulation

is then obtained

max.
pR,pA,pB ,s,t,z1,z2,z3,z4

log2(1 + s) + log2(1 + t),

s.t. 0 < pA ≤ PA,max; 0 < pB ≤ PB,max; 0 < pR ≤ PR,max;

z1CRR + s · σ2
nR
≤ pACAR; z2CBB + s · σ2

nB
≤ pRCRB ;

z3CRR + t · σ2
nR
≤ pBCBR; z4CAA + t · σ2

nA
≤ pRCRA;

z1 = s · pR; z2 = s · pB ; z3 = t · pR; z4 = t · pA.

(6.44)

which is based on a linear utility function, nine optimization variables, seven linear constraints and four

non-linear constraints. So far, this formulations of the problem remained all non-concave. However,

this last formulation was drawn in order to construct an algorithm to find the solution. To that end, it is

necessary to employ a convex/concave relaxation method, which approaches this non-concave problem

by concave means, making it possible to find an approximation of the optimal solution in feasible time.

Piecewise MacCormick Relaxation

Thus, finding a solution to problem (6.44), requires one to treat the bilinear terms present in the problem

constraints. These bilinear terms transform the feasible region of this problem into a non-concave set,

where finding the optimal solution may be infeasible. However, it is possible to effectively draw tight linear

bounds to the bilinear terms and, thus, obtain an approximation to the global solution for the non-concave

problem by employing gradient-based solvers. Among these techniques, MacCormick relaxation [111]

is one of the best methods known to deal with such problems. The main idea is that, for some instances

of the utility function domain, the regions described by non-linear constraints may be linear hyperplanes

[112], which can be treated separately to transform the non-concave problem into an equivalent concave

optimization problem. Basically, it is possible to approximate a non-concave optimization problem into

several concave ones.

For this reason, consider the use of Piecewise MacCormick envelopes (or partitions of the feasible

region of the problem) in order to replace the bilinear constraints by tight hyperplanes that locally create

a convex hull over these non-linear terms. Thus, consider the general case of a bilinear constraint in an

optimization problem over a subset of the problem feasible region [113], formulated as

max.
x,y,z

f(x, y, z),

s.t. z = xy,

(xL, yL, zL) ≤ (x, y, z) ≤ (xU , yU , zU ).

(6.45)
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The MacCormick relaxation aims to lower bound the bilinear terms with a convex function and to upper

bound it with a concave function, both in a form of linear constraints, as

max.
x,y,z

f(x, y, z),

s.t. z ≥ xLy + yLx− xLyL,

z ≥ xUy + yUx− xUyU ,

z ≤ xUy + yLx− xUyL,

z ≤ xLy + yUx− xLyU ,

(xL, yL, zL) ≤ (x, y, z) ≤ (xU , yU , zU ),

(6.46)

which transforms it in a concave problem, making it possible to obtain a solution by using convex/concave

solvers. Moreover, the error of this solution when compared with the optimal one is dependent on the

tightness of the used bounds, which is naturally related to the number of envelopes created for the

problem domain, i.e., the used partitions of the problem feasible region.

Therefore, the same procedure is applied to each bilinear term present in (6.44). The feasible region

of the problem is decomposed in hypercubes, i.e., (PLA,i, P
L
B,j , P

L
R,k) ≤ (pA, pB , pR) ≤ (PUA,i, P

U
B,j , P

U
R,k),

for (i, j, k) = (1, 1, 1), · · · , (Npart,A, Npart,B , Npart,R), where Npart,A, Npart,B and Npart,R represent the

number of partitions per variable. Since the partitions used in the Piecewise MacCormick relaxation

requires a closed set, a minimum value for each power is introduced (close to zero as desired). Thus,

it is considered that PLA,1 = PA,min, PLB,1 = PB,min, PLR,1 = PR,min, and that PUA,Npart,A
= PA,max,

PUB,Npart,B
= PB,max, PUR,part,B

= PR,max. Also, assume that the partitions cover all the space where

the three powers belong, i.e., PLA,i = PUA,i−1, PLB,j = PUB,j−1 and PLR,k = PUR,k−1. Finally, it is possible to

obtain a concave approximation of the problem in (6.44), for subset partition (i, j, k), as follows

max.
pR,pA,pB ,s,t,z1,z2,z3,z4

log2(1 + s) + log2(1 + t), (6.47)

s.t. (PLA,i, P
L
B,j , P

L
R,k) ≤ (pA, pB , pR) ≤ (PUA,i, P

U
B,j , P

U
R,k);

z1 · CRR + s · σ2
nR
≤ pACAR; z2 · CBB + s · σ2

nB
≤ pRCRB ;

z3 · CRR + t · σ2
nR
≤ pBCBR; z4 · CAA + t · σ2

nA
≤ pRCRA;

z1 ≥ pR · Smin + s · PLR,k − Smin · PLR,k; z1 ≥ pR · Smax + s · PUR,k − Smax · PUR,k;

z1 ≤ pR · Smin + s · PUR,k − Smin · PUR,k; z1 ≤ pR · Smax + s · PLR,k − Smax · PLR,k;

z2 ≥ pB · Smin + s · PLB,j − Smin · PLB,j ; z2 ≥ pB · Smax + s · PUB,j − Smax · PUB,j ;

z2 ≤ pB · Smin + s · PUB,j − Smin · PUB,j ; z2 ≤ pB · Smax + s · PLB,j − Smax · PLB,j ;

z3 ≥ pR · Tmin + t · PLR,k − Tmin · PLR,k; z3 ≥ pR · Tmax + t · PUR,k − Tmax · PUR,k;

z3 ≤ pR · Tmin + t · PUR,k − Tmin · PUR,k; z3 ≤ pR · Tmax + t · PLR,k − Tmax · PLR,k;

z4 ≥ pA · Tmin + t · PLA,i − Tmin · PLA,i; z4 ≥ pA · Tmax + t · PUA,i − Tmax · PUA,i;

z4 ≤ pA · Tmin + t · PUA,i − Tmin · PUA,i; z4 ≤ pA · Tmax + t · PLA,i − Tmax · PLA,i;
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where it is assumed that the epigraph variables s and t take values from the interval [Smin, Smax] and

[Tmin, Tmax], respectively. Further, these bound values used for the MacCormick relaxation method may

be computed regarding that s and t represent SINR values, at the relay or at the terminals, for a certain

range of the transmit powers. Thus, they are computed as

Smax = min
{ PUA,iCAR

PLR,kCRR + σ2
nR

,
PUR,kCRB

PLB,jCBB + σ2
nB

}
, Smin = min

{ PLA,iCAR

PUR,kCRR + σ2
nR

,
PLR,kCRB

PUB,jCBB + σ2
nB

}
;

Tmax = min
{ PUB,jCBR

PLR,kCRR + σ2
nR

,
PUR,kCRA

PLA,iCAA + σ2
nA

}
, Tmin = min

{ PLB,jCBR

PUR,kCRR + σ2
nR

,
PLR,kCRA

PUA,iCAA + σ2
nA

}
.

Refinement of the Solution

The solution obtained via Piecewise MacCormick relaxation is only an approximation to the sum rate

non-concave optimization problem. This solution may indeed contain a large error when compared with

the optimal solution, depending on the number of space partitions, as mentioned. On the other hand,

a large number of space partitions increases the algorithm complexity exponentially. Thus, it may be

necessary to refine the powers after the MacCormick relaxation stage is performed. The refinement of

the solution is then carried out by approximating the utility function in (6.42) with a concave upper bound

function, for the space partition where the obtained MacCormick solution lies.

The idea is to use the well known relation, log(x) ≤ x− 1, twice such that a concave upper bound is

obtained. This idea is shown for the general case of a quotient of variables as follows

x

y
=
xk
yk
· x/xk
y/yk

≥ xk
yk

(
log
( x
xk

)
− log

( y
yk

)
+ 1
)
≥ xk
yk

(
log
( x
xk

)
− y

yk
+ 2
)

where xk and yk are introduced constants that are further used in an iterative process, in order to

successively obtain better approximations. Therefore, this procedure is applied to each SINR term

present in the utility function that has the form of a quotient of variables, and that are the argument of

the min{·} functions in (6.42). By doing so, it is possible to obtain

pACAR
pRCRR + σ2

nR

≥ g1(pA, pB , pR) =
pA,kCAR

pR,kCRR + σ2
nR

(
log2

( pACAR
pA,kCAR

)
−

pRCRR + σ2
nR

pR,kCRR + σ2
nR

+ 2
)

(6.48)

pRCRB
pBCBB + σ2

nB

≥ g2(pA, pB , pR) =
pR,kCRB

pB,kCBB + σ2
nB

(
log2

( pRCRB
pR,kCRB

)
−

pBCBB + σ2
nB

pB,kCBB + σ2
nB

+ 2
)

(6.49)

pBCBR
pRCRR + σ2

nR

≥ f1(pA, pB , pR) =
pB,kCBR

pR,kCRR + σ2
nR

(
log2

( pBCBR
pB,kCBR

)
−

pRCRR + σ2
nR

pR,kCRR + σ2
nR

+ 2
)

(6.50)

pRCRA
pACAA + σ2

nA

≥ f2(pA, pB , pR) =
pR,kCRA

pA,kCAA + σ2
nA

(
log2

( pRCRA
pR,kCRA

)
−

pACAA + σ2
nA

pA,kCAA + σ2
nA

+ 2
)

(6.51)

where g1, g2, f1 and f2 are all linear functions, and where the constants pA,k, pB,k and pR,k are introduced

such that an iterative process can be applied to the refinement method as well. Furthermore, these

successive approximations guarantee a strict refinement of the solution, i.e., a process that always gets

closer to the optimal solution, since these functions form an upper bound to the problem utility function,

99



thus, always having a negative gradient.

Therefore, a refinement stage is introduced, aiming to solve, at each iteration k, the following problem

max.
pR,pA,pB

log2

(
1 + min{g1, g2}

)
+ log2

(
1 + min{f1, f2}

)
,

s.t. PA,min < pA ≤ PA,max; PB,min < pB ≤ PB,max; PR,min < pR ≤ PR,max,
(6.52)

where here the utility function of this problem is concave, since it is the sum of a composition of concave

monotonically increasing functions with linear ones. The constraints are also linear, making the problem

concave and, thus, solvable with gradient-based methods [109]. Finally, the algorithm proposed to find

an approximation to the optimal powers that maximize the bidirectional sum rate, based on Piecewise

MacCormick relaxation and followed by an iterative solution refinement is stated in algorithm 4.

Algorithm 4 Close to Optimal Powers for Sum Rate Maximization
Input: Channel coefficients, CAR, CBR, CRR, CRA, CRB , CAA, and CBB (instantaneous or ergodic);
Peak power for each element, PA,max, PB,max, and PR,max;
Output: Close to optimal powers, p∗A, p∗B and p∗R;
1. Initialization: Set the number of partitions per variable, Npart,A, Npart,B , Npart,R; Set the partitions
sizes of each variable; Initialize power bounds, PLA,1, PLB,1, PLR,1, PUA,1, PUB,1, PUR,1; Set the number of
iterations for refinement Nref and stopping criteria η.
2. Piecewise MacCormick Iterations: for (i, j, k) = (1, 1, 1), · · · , (Npart,A, Npart,B , Npart,R):

Solve Optimization problem in (6.47):
i) Power range: PLA,i, P

L
B,j , P

L
R,k, PUA,i, P

U
B,j , P

U
R,k;

ii) Use convex/concave optimization tools [103];
iii) Store obtained powers, pA,i, pB,j and pR,k.

3. Evaluation: Revisit all obtained powers and pick (p̂A, p̂B , p̂R) that maximizes RΣ and correspondent
space partition (P̂LA , P̂LB , P̂LR ,P̂UA , P̂UB , P̂UR );
4. Refinement: Refine the obtained powers to get (p∗A, p

∗
B , p

∗
R):

Initiate power constants: pA,0 = p̂A, pB,0 = p̂B and pR,0 = p̂R;
Power range: (PA,min, PB,min, PR,min) = (P̂LA , P̂

L
B , P̂

L
R ), (PA,max, PB,max, PR,max) = (P̂UA , P̂

U
B , P̂

U
R );

for k = 1, · · · , Nref do
i) Solve optimization problem in (6.52) for the chosen space partition [103];
ii) Update power constants: pA,k+1 = pA,k, pB,k+1 = pB,k and pR,k+1 = pR,k;
iii) Stopping criteria: if ‖ (pA,k+1, pB,k+1, pR,k+1)− (pA,k, pB,k, pR,k) ‖2 / ‖ (pA,k, pB,k, pR,k) ‖2≤ η ;

end for

5. Terminate: After all iterations are completed or reached the stopping criteria: p∗A = pA,end, p∗B =

pB,end and p∗R = pR,end.

Note that the fair sum rate optimization can be solved with algorithm 4 by only adding the linear extra

constraint, as in (6.41), in each optimization stage (in optimization problem (6.47) and (6.52)).

6.7 Numerical Results of the Proposed Algorithm

This section evaluates the performance of the sum rate maximization algorithm, previously proposed.

For simulation proposes, it is considered that the relay has MR = 4 receive antennas and MT = 1
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transmit antennas. As previously stated, it is assumed that all channels vectors are generated from a

complex normal distribution, i.e., hAR, hBR, hRR entries take values from CN (0, 1), while the channel

gains hRA, hRB , hAA, hBB are drawn from CN (0, 1). Also, it is assumed that the thermal noise at each

antenna of the system has normalized power of −10 dB, i.e., σ2
nA

= σ2
nB

= −10 dB and that σ2
nR

= −4

dB. The power range for the terminals is considered to be [−20, 10] dB, while the relay normalized power

can take values from [0, 30] dB, i.e., PA,min = PB,min = −20 dB, PA,max = PB,max = 10 dB and

PR,min = 0 dB, PR,max = 30 dB. These normalized power ranges reflect that done in practical systems,

where the relay can transmit with much larger power since it is fixed and connected to a power supply,

while the terminals only have access to batteries with limited capacity. Moreover, these ranges may be

larger when compared to practical scenarios in order to broadly understand the algorithm performance.

Utility Function Analysis

In order to understand the complexity of the optimization problem proposed in (6.40), its utility function

is depicted in Fig. 6.8 after 103 channel realizations (approximation of the ergodic case), for two fixed pR

values and varying pA and pB values. The residual self-interference is set to kA = kB = kR = −20 dB.
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Figure 6.8: Utility function of the optimization problem for fixed relay transmit power pR.

As may be observed in 6.8(a), the figure shows that when the relay is transmitting with its maximum

power, the terminals should also employ their peak powers in order to maximize the system sum rate.

However, in this case the relay suffers major system degradation due to the self-interference component,

that also increases with pR, and for that reason the sum rate takes very low values. Notwithstanding,

Fig. 6.8(b) shows that when the relay transmits with a power inferior to the terminal’s peak powers, the

sum rate may take higher values, which is desirable. Thus, the power allocation at the terminals and at

the relay is clearly not obvious, and so proposed algorithm is expected to find both terminals and relay

transmit power that maximizes the sum rate.

Before evaluating the output of the proposed algorithm, it is interesting to define the following refer-

ence cases for comparison and analysis purposes:
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Perfect Self-Interference Cancellation

The case of perfect self-interference cancellation (P-SIC) is the upper bound to the sum rate considered

in this problem, since the effect of interference is not considered. It is then possible to employ the

maximum power at each terminal and at the relay. This yields a sum rate that is given by

RΣ,P-SIC = log2

(
1 + min

{PA,maxCAR
σ2
nR

,
PR,maxCRB

σ2
nB

})
+ log2

(
1 + min

{PB,maxCBR
σ2
nR

,
PR,maxCRA

σ2
nA

})
.

(6.53)

Half-Duplex

The case of half-duplex (HD) defines the threshold above which it the use of full-duplex mode is worthy

as it achieves a gain in the system sum rate, which may be also computed with the maximum powers.

However, it is necessary to use two channel resources, which drops the achievable rate to

RΣ,HD =
1

2
log2

(
1 + min

{PA,maxCAR
σ2
nR

,
PR,maxCRB

σ2
nB

})
+

1

2
log2

(
1 + min

{PB,maxCBR
σ2
nR

,
PR,maxCRA

σ2
nA

})
.

(6.54)

Peak Power Transmission

It is also interesting to compare the proposed algorithm with two cases where the maximum available

power is used. The first is maximum power (MP) and consists of using the maximum available power of

each terminal and of the relay, yielding

RΣ,MP = log2

(
1 + min

{ PA,maxCAR
PR,maxCRR + σ2

nR

,
PR,maxCRB

PB,maxCBB + σ2
nB

})
+

+ log2

(
1 + min

{ PB,maxCBR
PR,maxCRR + σ2

nR

,
PA,maxCRA

PA,maxCAA + σ2
nA

})
.

(6.55)

The other case is to assume uniform distribution of power (UP), i.e., the terminals and relay employed

the same power to transmit, as Pmax = min{PA,max, PB,max, PR,max}. Since it is considered a lower

and equal peak power for the terminals, Pmax = PA,max. The rate is then given by

RΣ,UP = log2

(
1 + min

{ PmaxCAR
PmaxCRR + σ2

nR

,
PmaxCRB

PmaxCBB + σ2
nB

})
+

+ log2

(
1 + min

{ PmaxCBR
PmaxCRR + σ2

nR

,
PmaxCRA

PmaxCAA + σ2
nA

})
.

(6.56)

6.7.1 Different Number of Space Partitions and Refinement Iterations

Evaluating firstly the effect of the algorithm parameters, i.e., how the number of space partitions and

the number of refinement iterations affect the performance of the algorithm, consider the ergodic sum

rate optimization (with utility function as in 6.5.2). Fig. 6.9 shows the sum rate for the ergodic channel

and for different Npart = Npart,A = Npart,B = Npart,R and Nref (without stopping criteria), and also

for varying levels of interference. It is evaluated the case when the solution refinement is used with
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(a) Npart = 3, Nref = 200.
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(b) Npart = 2, Nref = 1000.

Figure 6.9: Impact of the number of space partitions Npart and the number of refinement iterations Nref
on the proposed algorithm, for the ergodic case.

MacCormick relaxation (red lines) and also when the algorithm is performed without refinement (dark

blue lines). As may be observed, the best solution which attains higher sum rates depends directly

on the parameters under evaluation. In 6.9(a), the curve for Npart = 3 and Nref = 200 demonstrates

that it is possible to obtain a sum rate above the reference schemes, considering interference effects,

which indicates the good performance of the algorithm. In fact, it does not prove that a close to the

optimal solution is obtained, however, it may be assumed so when comparing both curves in the figure.

The P-SIC and HD curves are obviously independent of the self-interference power. The target is to

have a sum rate between the two, i.e., having a real rate gain by using full-duplex transmissions when

compared with the half-duplex transmission. Since a considerable number of space partitions are taken,

the refinement method only introduces a small but significant gain in terms of sum rate, especially

for low and high power levels of interference. Moreover, there is the need to solve 33 + 200 = 227

linear programs, which is computationally feasible. In contrast, Fig 6.9(b) only employs two partitions

per variable, which shows that it is necessary to use a higher number of iterations in the refinement

algorithm to obtain a sum rate which is better than the previously mentioned reference schemes for

some levels of interference. Nevertheless, solving 32 + 1000 = 1009 linear programs does not improve

the algorithm performance, hence the critical aspect of the proposed algorithm resides in choosing an

appropriate number of partitions.

6.7.2 Sum Rate Performance with and without Fair Constraint

Another interesting aspect is to evaluate the instantaneous sum rate, i.e., the power allocation for a

channel realization, also for the cases where the fair rate constraint is and is not considered. It is

expected that when introducing it, the algorithm performance will decrease, however, the bidirectional

exchange of information will be guaranteed.

Fig. 6.10(a) shows the sum rate curves for Npart,A = Npart,B = Npart,R = 3, Nref = 200, with a

stopping criteria η = 10−6 and an aggressive unbalance factor of % = 0.05. Also the channel under

consideration is defined by hAR = [1.0 − j1.2, 2.2 + j0.4,−0.2 − j2.4,−0.3 − j0.4]T , hBR = [0.7 −
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(a) Sum rate with and without fair rate constraint.
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Figure 6.10: Impact evaluation of the fair sum rate constraint for one channel realization on the proposed
algorithm.

j0.5, 1.5 + j1.6,−1.2 − j0.9, 1.0 + j0.4]T , hRR = [0.8 − j0.7, 0.9 + j0.3,−0.5 − j1.1, 1.5 + j0.1]T , and by

hRA = 3.1 + j1.7, hRB = −1.1 + j0.2, hAA = 2.4− j1.7, hBB = −2.2 + j0.4.

Firstly, observe the fair sum rate is under the curve where this constraint is not considered. However,

this only happens for high levels of interference power. For low levels of interference, the fair sum rate

and the sum rate achieved by the proposed algorithm match perfectly. This effect is also illustrated in

Fig. 6.10(b) where the two bidirectional rates are plotted for different levels of interference. As may be

observed, when the interference power is higher than −40 dB, the best scheme is to turn one of the

terminals almost off and transmit at full power with the other. The mentioned effect unbalances the flow

of information, which is not desirable in such a scenario. Thus, by introducing the fair rate constraint

there is a trade-off between maximizing the sum rate and having the the terminals transmitting with

similar powers and rates.

Fig. 6.11 illustrates the power distribution for different levels of interference, where it is possible

to understand the mentioned effect. In Fig. 6.11(b), the power employed at each terminal is always

very similar and close to the peak power for low levels of interference, while in Fig. 6.11(a) for high

interference power one of the terminals transmits close to the minimum power and the other close to the

maximum. In both cases the transmitted relay power is the variable which reflects mostly the effect of

self-interference in terms of sum rate.

In fact, the in-band full-duplex mode should only be employed if its rate is higher than the half-

duplex counterpart (yellow line). For this channel, this occurs for levels of interference smaller than

approximately −40 dB where, as Fig. 6.10(a) shows, the optimal power allocation is virtually the same

considering and not considering the fair sum rate constraint. Moreover, this numerical analysis shows

also that the only optimization variable should be the relay power, pR, while the transmit terminal power

should always be pA = pB = PA,max = PB,max, saving computation time in the algorithm. Finally, it is
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(b) Power allocation with fair rate constraint.

Figure 6.11: Allocated powers for one channel realization of the proposed algorithm.

worth referring to the fact that the power allocation gain is clear when it is compared with MP and UP.

6.8 Concluding Remarks

This chapter proposes an in-band full-duplex system that uses the properties of PLNC to improve the

used resources in a bidirectional exchange of information between two terminals through a relay station.

Firstly, a basic PLNC scheme was introduced, the DeF protocol, that uses a QPSK constellation along

with well-known network code functions. The possibility of establishing a reliable communication was

shown with it, despite this scheme’s simplicity. Furthermore, the best network function and constellation

mapping was derived and numerically evaluated. Then, state-of-the-art CF protocol for the complex

fast fading channel is proposed with transmission precoding. However, since the protocol relies on

the channel estimations, its performance deteriorates in the presence of imperfect CSI. Massive MIMO

transmissions were introduced into the system and it was shown how the orthogonality between large

matrices helps reduce the protocol inherent interference, but also the effect of the self-interference. The

latter effect was verified with SER curves, where the errors in the channel estimations may be mitigated

with large dimension transmissions.

Finally, an optimization problem was presented that assumes only peak power constraints in the relay

and in the terminals and tries to maximize the bidirectional sum rate of the system. This problem was

shown to be non-concave, and thus, an iterative algorithm based on Piecewise MacCormick relaxation

with a refinement stage was derived. The algorithm was shown to achieve a good performance in terms

of sum rate. Moreover, the numerical analysis performed demonstrates that for low levels of interference,

the terminals should transmit with their maximum power, while only the relay power should be considered

for optimization.
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Chapter 7

Conclusions

The work presented in the previous chapters evaluates the possibility of in-band full-duplex transmis-

sions for future multi-hop networks. To begin with, a full-duplex relaying system is characterized and

different methods for canceling the problem of self-interference are examined. Then, the use of massive

arrays at the relay station is incorporated, so that an extra level of mitigation is obtained. Finally, bidirec-

tional communication is taken into account by exploring the recent advances in physical layer network

coding (PLNC). The following section summarizes the statements already made within the document.

In addition, some research paths for possible future work are suggested.

7.1 Overall Considerations

The forthcoming change of paradigm along with the predicted exponential growth of data flowing through

our wireless networks is driving the search for disruptive technologies capable of corresponding with

these new demands. Among them and with great potential, lies in-band full-duplex communications,

which will double the spectral efficiency of current transmissions and will facilitate management of the

available spectrum. However, self-inflicted interference poses a great challenge to the deployment of

this technology. If not properly dealt with, this so-called self-interference may create unbearable signal-

to-interference-plus noise ratios (SINR) for allowing the establishment of reliable communication links.

Thus, this thesis starts by reviewing the literature on in-band full-duplex systems and basic concepts

of multiple-input multiple-output (MIMO) wireless communications, which allows it to study and propose

new techniques and systems where the performance of full-duplex transmissions can be enhanced. The

contribution of this work is summarized in the following paragraphs.

In first place, an in-band full-duplex relay station was formally and fully described, special focus was

given to the system impairments that cause residual self-interference. In order to mitigate this effect,

spatial suppression filters were studied, that take advantage of the extra degrees of freedom brought by

MIMO transmissions. The bit error rate (BER) for two different types of these filters, null-space projection

(NSP) and minimum mean square error (MMSE), was evaluated and where it was possible to observe a

self-interference resilience of approximately 20 dB. However, spatial suppression suffers from distortion
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when shaping the transmitted and desired signal. For that reason, adaptive feedback cancellation filters

were proposed. Namely, a least mean square (LMS) and a recursive least squares (RLS) filter were

derived for MIMO frequency-selective channels and under OFDM transmissions. Both techniques’ per-

formance was measured in terms of BER plots that demonstrate the possibility of obtaining levels up to

40 dB of self-interference resilience, depending on the system impairments that pose the main obstacle

for these filters.

Secondly, and considering the methods derived for canceling self-interference, the use of a massive

array at the relay station was explored. The orthogonal properties between large dimension matrices

can in fact contribute to cancellation of the residual part of this undesirable effect. Therefore, a system

with MMSE filtering was proposed combined with zero forcing (ZF) detection and precoding filters. The

BER was assessed at the relay and at the final destinations, showing a gain in interference resilience

when using several antennas and revealing an optimal relay transmit power. Consequently, an algorithm

to find the optimal power allocation scheme that minimizes the system energy efficiency (EE) under a

minimum link quality was derived.

Finally, bidirectional relaying was brought together with in-band full-duplex transmissions, in the hope

of reducing the number of employed resources in a two-way relay channel (TWRC) to the same as

machine-to-machine communication (m2m). To that end, techniques from PLNC were studied and

adapted to the previous systems. Two protocols were considered for this purpose, namely, denoise-

and-forward (DeF) and compute-and-forward (CF), where it was possible to evaluate the performance of

both schemes in terms of BER or symbol error rate (SER). Furthermore, the integration of large anten-

nas is proposed for the CF protocol and the performance degradation of the scheme was assessed for

different numbers of antennas and for channel estimation errors. Additionally, the achievable sum rate

of this system was derived and an optimization algorithm proposed in order to find the optimal transmit

powers that maximize it.

7.2 Future Research Work

Due to the nature of this thesis, there are many possible research paths that directly follow the work

developed and presented. This section succinctly enumerates some research that would complement

this work. The first to mention is the possibility of combining spatial suppression and feedback adaptive

cancellation filters, so that higher levels of self-interference mitigation could be achieved. This requires

carefully choosing each filter’s relative position and understanding their mutual effect. Another mean-

ingful result is to assume more realistic channel estimations when considering large arrays of antennas.

In fact, this is one of the major problems of large dimension channel matrices, which is neglected in

this work by simply assuming the same procedure for the small number of antennas case. Finally, the

next step in research is to generalize the bidirectional full-duplex relaying for the TWRC to the case

of multiple-way relay channel, exploring more advanced CF techniques with higher dimension lattices

proposed in [67].
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Appendix A

Analysis of the Feedback Cancellation

Algorithms

A.1 LMS Estimation Mean Error

The mean error of the LMS filter is derived based on the average theory assuming the use of a small

step size µ [98]. Defining the vector f̃(n) = fOpt.(n) − r(n) =
∑LA

l=0 AOpt.[k]̃t(n − l) − r(n) and the

MSE optimal solution for the feedback filter parameters A?,Opt. is as in (4.28) (usually called the Wiener

solution), it comes

Ã?,n = Â?,n −A?,Opt. = Â?,n−1 −A?,Opt. + µ
(
r(n)− fOpt.(n) + fOpt.(n)−AT

? � T̃(n)
)
⊗ T̃H(n)

= Ã?,n−1 − µf̃(n)⊗ T̃H(n) + µ
(
fOpt.(n)−

LA∑
l=0

(
Â[l](n)− ÂOpt.[l](n) + ÂOpt.[l](n)

)
t̃(n− l)

)
⊗ T̃H(n)

= Ã?,n−1 − µf̃(n)⊗ T̃H(n) + µ
( LA∑
l=0

Ã[l](n)̃t(n− l)
)
⊗ T̃H(n)

= Ã?,n−1 − µf̃(n)⊗ T̃H(n) + µ
([

ÃOpt.[0]| · · · |ÃOpt.[LA]
]
�
[̃
t(k)| · · · |̃t(k − LA)

])
⊗ T̃H(n)

=
[
I− µt̄(n)⊗ t̄(n)

]
Ã?,n−1 − µf̃(n)⊗ T̃H(n)

≈
[
I− µΣt̃,̃t

]
Ã?,n−1 − µf̃(n)⊗ T̃H(n),

(A.1)

where, the approximation taken in the last step comes from the average theory.

A.2 LMS Mean Square Parameter Error

To evaluate the MSE of the filter parameter error, it is necessary to assume that the state matrix Ã?,n−1

is uncorrelated with the filter input q̃(n)⊗ t̄(n), for k = 0, · · · , LA, and that the signal r̃(n) and the vector

t̄(n) are mutually independent. The first assumption is highly unrealistic, since the filter error depends
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clearly on the previous observed vector, however, it allows to simplify this problem yielding good results

[98]. Therefore, defining the mean square error matrix as

P(n) = E{Ã?,nÃH
?,n}, (A.2)

considering equation (4.35) and the above assumptions, it is obtained that

P(n) =
[
I− µΣt̃,̃t

]
P(n− 1)

[
I− µΣt̃,̃t

]H
+ µ2E{f̃H(n)f̃(n)}Σt̃,̃t, (A.3)

which represents a linear time-invariant state space model with P(n) as state variables. Once again, the

above system, that has eigenvalues given by all the combinations of (1− µλi) · (1− µλj), where λi,j , for

i, j = 1, · · · , LA are the eigenvalues of Σt̃t̃, converges to a steady state value i.f.f. 0 < µ < 2/λ1. The

steady state value of the error, P, is obtained by solving the Lyapunov equation

P =
[
I− µΣt̃,̃t

]
P
[
I− µΣt̃,̃t

]H
+ µ2E{f̃H(n)f̃(n)}Σt̃,̃t. (A.4)

To solve the problem, consider the spectral decomposition of Σt̃,̃t = VΛVH . By multiplying the

Lyapunov equation by VH from the left and V from the right

VHPV = VH
[
I− µΣt̃,̃t

]
P
[
I− µΣt̃,̃t

]H
V + µ2E{f̃(n)f̃(n)}VHΣt̃,̃tV

=
[
I− µΛ

]
VHPV

[
I− µΛ

]H
+ µ2E{f̃H(n)f̃(n)}Λ[

I− µΛ
]
Q
[
I− µΛ

]H
+ µ2E{f̃H(n)f̃(n)}Λ,

(A.5)

where Q = VHPV is a diagonal matrix (since I,Λ are diagonal matrices), which entries are given by

qi = (1− µλi)2qi + µ2E{f̃H(n)f̃(n)}λi,

giving the following solution

qi =
µ2E{f̃H(n)f̃(n)}

2− µλi
, for i = 1, · · · , LA. (A.6)
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A.3 First Derivative of the RLS MSE Approximation

The derivative of the LMS MSE approximation in equation (4.40) is given by

∂

∂A?
M̂SERLS(n,A(z)) =

∂

∂A?

( n∑
k=1

λn−k(f(k)−
LA∑
l=0

A[l]̃t(k − l))
)H( n∑

l=1

λn−l(f(l)−
LA∑
l=0

A[l]̃t(k − l))
)

= − 2

n∑
k=1

λn−k
(
f(k)−AT

? � T̃(k)
)
⊗ T̃H(n)

= − 2

n∑
k=1

λn−kf(k)⊗ T̃H(k) + 2

n∑
k=1

λn−k
LA∑
l=0

A[l]̃t(k − l)⊗ T̃H(k)

= − 2

n∑
k=1

λn−kf(k)⊗ T̃H(k) + 2(

LA∑
l=0

A[l]

n∑
k=1

λn−kt̃(k − l))⊗ T̃H(k)

= − 2Σ̂RLS
t̃,f

(n) + 2Σ̂RLS
t̃,̃t

(n)A?,n,

(A.7)

A.4 RLS Estimation Error

Considering that Â?,n =
[
Σ̂RLS

t̃,̃t
(n)
]−1

Σ̂RLS
t̃,r

(n) =
[

1
nΣ̂RLS

t̃,̃t
(n)
]−1 1

nΣ̂RLS
t̃,r

(n), the LMS error matrix may

be written as follows

Ã?,n = Â?,n −A?,Opt.

=
[
Σ̂RLS

t̃,̃t
(n)
]−1

Σ̂RLS
t̃,r

(n)−A?,Opt.

=
[
Σ̂RLS

t̃,̃t
(n)
]−1

n∑
k=1

r(k)⊗ T̃H(k)−A?,Opt.

=
[
Σ̂RLS

t̃,̃t
(n)
]−1

n∑
k=1

(r(k)− fOpt.(k) + fOpt.(k))⊗ T̃H(k)−A?,Opt.

=
[
Σ̂RLS

t̃,̃t
(n)
]−1

n∑
k=1

(f̃(k) +

LA∑
l=0

AOpt.[l]̃t(k − l))⊗ T̃H(k)−A?,Opt.

=
[
Σ̂RLS

t̃,̃t
(n)
]−1

n∑
k=1

f̃(k)⊗ T̃H(k)

+
[
Σ̂RLS

t̃,̃t
(n)
]−1

n∑
k=1

[
AOpt.[0]| · · · |AOpt.[LA]

]
�
[̃
t(k)| · · · |̃t(k − LA)

]
⊗ T̃H(k)−A?,Opt.

=
[
Σ̂RLS

t̃,̃t
(n)
]−1

n∑
k=1

f̃(k)⊗ T̃H(k) +
[
Σ̂RLS

t̃,̃t
(n)
]−1
( n∑
k=1

t̄(k)⊗ t̄H(k)
)
A?,Opt. −A?,Opt.

=
[ 1

n
Σ̂RLS

t̃,̃t
(n)
]−1 1

n

n∑
k=1

f̃(k)⊗ T̃H(k).

(A.8)

where the MSE optimal solution for the feedback filter parameters is A?,Opt. and f̃(n) = fOpt.(n)−r(n) =∑LA

l=0 AOpt.[k]̃t(n− l)− r(n).
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A.5 RLS Mean Square Parameter Error

The Equation covariance of the parameter error, considering (4.45) may be derived as

Q(n) = E{Ã?,nÃH
?,n}

= E
{[ 1

n
Σ̂RLS

t̃,̃t
(n)
]−1 1

n2

n∑
k=1

f̃(k)⊗ T̃H(k)
( n∑
l=1

f̃(l)⊗ T̃H(l)
)H[ 1

n
Σ̂RLS

t̃,̃t
(n)
]−1}

≈ Σ−1
t̃,̃t

E
{ 1

n2

n∑
k=1

f̃(k)⊗ T̃H(k)
( n∑
l=1

f̃(l)⊗ T̃H(l)
)H}

Σ−1
t̃,̃t

= Σ−1
t̃,̃t

1

n2
E
{ n∑
k=1

n∑
l=1

t̄(k)f̃H(k)f̃(l)̄tH(l)
}

Σ−1
t̃,̃t

= E
{ n∑
k=1

n∑
l=1

f̃H(k)f̃(l)
}

Σ−1
t̃,̃t

1

n
E
{ 1

n

n∑
k=1

n∑
l=1

t̄(k)̄tH(l)
}

Σ−1
t̃,̃t

=
1

n
E
{ n∑
k=1

n∑
l=1

f̃H(k)f̃(l)
}

Σ−1
t̃,̃t
,

(A.9)

where it was assumed the same assumptions used for the LMS filter analysis and where the approxi-

mation in the first deduction comes from considering that for a large n the expected value of the matrix

E
{

1
nΣ̂RLS

t̃,̃t
(n)
}

is approximately the correlation matrix Σt̃,̃t [98].
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