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Resumo

A quinta geração de comunicações móveis tem como objectivo cumprir os requisitos em termos de

capacidade, cujo crescimento na próxima década é previsto ser exponencial. Uma das propostas para

satisfazer tal aumento é a extensão dos sistemas convencionais multiple-input multiple-output (MIMO)

para um número massivo (largas dezenas a centenas) de antenas. Embora promissora, esta tecnologia traz

alguns desafios que terão primeiro de ser superados. Um desses problemas é o aumento da complexidade

em termos de processamento de sinal, que pode tornar-se incomportável quando técnicas tradicionais

são utilizadas. É portanto necessário encontrar métodos que tenham uma performance tão perto do

óptimo quanto possı́vel e que, ao mesmo tempo, tenham baixa complexidade. Nesta tese, é dada uma

especial ênfase a algoritmos para efectuar detecção e precodificação para sistemas MIMO de grandes

dimensões. Em particular, quando o número de antenas na estação base é muito maior que o número

de utilizadores a serem servidos, um método de processamento linear baseado na Neumann series e no

lema de inversão de matrizes é proposto. Adicionalmente, algoritmos aleatórios para efectuar detecção

em sistemas de MIMO massivo são exaustivamente estudados. Nomeadamente, uma variante de Gibbs

sampling optimizada é sugerida, mostrando-se a sua superioridade em termos de performance face aos

métodos existentes no estado da arte, incluindo uma técnica de lattice reduction. Finalmente, explorando

as vantagens providenciadas pelo número elevado de antenas, um sistema repetidor full-duplex com

MIMO massivo é avaliado. Este estudo inclui o desenho dos filtros de transmissão e recepção que,

usando um esquema de alocação de potências óptimo, é capaz de atingir eficiências energéticas elevadas,

satisfazendo em simultâneo os requisitos individuais em termos de taxa de transferência. Em todos os

algoritmos aqui propostos, tanto a implementação em hardware como a adequabilidade para computação

em paralelo foram tidas em consideração. Os resultados apresentados incluem exemplos ilustrativos e

resultados numéricos elucidativos.

Palavras-chave: 5G, MIMO massivo, algoritmos de deteccção MIMO, lattice reduction, Gibbs

sampling, Neumann series, full-duplex, alocação de potência óptima
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Abstract

Fifth generation wireless networks aim to meet the requirements imposed by the ever increasing de-

mand in capacity. One of the proposals under consideration is the extension of traditional multiple-input

multiple-output (MIMO) systems to the use of a massive number (a few dozens to hundreds) of anten-

nas. Even though promising, this technology brings some challenges that must first be surpassed. One

of such problems is the increase in signal processing complexity, which might become unbearable when

conventional techniques are used. Hence, one is to find methods that perform as close to optimal as pos-

sible, while yielding low complexity. In this thesis, a special emphasis on suitable algorithms to perform

detection and precoding in large MIMO systems has been given. Particularly, for the case where the

number of antennas at the base station is much larger than the number of served users, effective linear

processing methods, based on the Neumann series and on the matrix inversion lemma, are proposed. Fur-

ther, randomised algorithms to perform detection in symmetric massive MIMO systems are thoroughly

studied. Namely, an optimised Gibbs sampling variant method is suggested and shown to outperform the

existing ones in the literature, including state-of-the-art lattice reduction methods. Finally, capitalising

on the advantages provided by large-scale arrays, a massive MIMO enabled full-duplex relay setup is

evaluated. This includes the design of transmit and receive linear filters that, using a link dependent

optimal power allocation scheme, is able to attain high energy efficiencies, whilst satisfying individual

throughput requirements. In all of the proposed algorithms, both hardware feasibility and suitability for

parallel computation have been taken into consideration. The results herein presented include illustrative

examples and insightful numerical simulations.

Keywords: 5G, massive MIMO, MIMO detection algorithms, lattice reduction, Gibbs sampling,

Neumann series, full-duplex, optimal power allocation
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Chapter 1

Introduction

The motivations behind this thesis will be detailed in this initial chapter. An overall structure of the

document is provided in the last section, as well as the main contributions of this work.

1.1 Motivation

Over the past few decades we have been experiencing a rapid growth in mobile communications traffic.

Everyday an increasing number of users demand more speed and reliability, anytime and anywhere.

This fact is stimulating the industry to think ahead and plan future networks, which must be able to

deliver an increased capacity and performance at a diminished cost. Recent studies forecast a total of 50

billion connected devices by 2020 [1], resulting in a need of a thousandfold gain in capacity per square

kilometre.

The deployment of the next and fifth generation of mobile networks (5G) is expected to emerge

between 2020 and 2030. 5G will involve a combination of existing and evolving technologies, such

as LTE-A1 and Wi-Fi, and will have to support a large diversity of applications with a large variety of

requirements, rendering an ’all-in-one’ solution an inefficient one. Recent research has been focusing on

how to deliver higher data rates, reduced latency and enhanced indoor coverage for an increased number

of devices [2]. In order to meet these challenges, researchers in both academia and industry have been

studying and developing promising techniques that will be present in future networks. Some of those

novel approaches as well as existing ones will be discussed in the next section.

1.1.1 5G Requirements

Thus far, mobile operators and the industry have been trying to follow the increasing trend of traffic

with the successive release of new features and functionalities. The latest of those releases is LTE-A

(Release 13) [3], whose deployments are growing globally, and expects to provide a higher capacity

with the implementation of carrier aggregation, an improved spatial multiplexing scheme and support

1Long Term Evolution-Advanced; also known as the fourth generation of mobile networks.
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for relay nodes. However, and despite the advances made so far, new market trends are imposing re-

quirements which are forcing the development of a fifth generation of mobile networks. In addition to

the current functionalities, this new system should be able to support innovative services, which so far

were not possible due to capacity and latency constraints. Some examples are the Internet of Things

(IoT) connectivity, enhanced e-health or even machine-to-machine (M2M) communications - the idea is

to redefine human and machine networks in such a way that everything is connected at a zero-distance

[4].
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(a) Cisco forecasts an approximate increase of ten times in
overall data traffic between 2014 to 2019. (based on data from
[5]).

(b) Whilst mobile traffic volume is expected to increase exponentially, net-
work operators’ revenues have been following a logarithmic trend (repro-
duced from [6]).

Figure 1.1: Trends of traffic data volume in the next decade.

As a result, an exponential growth in traffic volume is expected to occur until the year of 2020,

while the revenues are bound to remain nearly constant, as is depicted in figure 1.1. These facts raise an

additional challenge, which is how to keep mobile networks profitable in the long term. Considering this
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economic aspect and in order to fulfil the objectives described above, there are five high priority aspects

that must be taken into account [1, 7, 8]:

Capacity 5G systems must be able to cope with traffic volumes which are various orders of magnitude

larger than today’s networks. With the most recent forecasts [7] and in order to give the impression

of ”infinite capacity”, a thousand-fold gains per square kilometre will be needed when compared

to the current generation of LTE-A.

Data Rates In general, the user experienced data rates must be higher than the current ones. Obviously,

the requirements depend on the assumed scenario - office usage has different requirements from

a pedestrian way situation, for instance. The idea is to deliver a better quality of service with

responses to the requests perceived as instantaneous. To support that and as an illustrative example,

end users should experience data rates of at least 1 Gb/s and 5 Gb/s in 95 and 20 percent of office

locations, respectively, and during 99 percent of the busy period [7]. Locations with bad coverage,

such as rural areas, should also be provided with rates of at least 100 Mb/s in the downlink and 20

Mb/s in uplink and latencies below 100 ms [7].

Connectivity 5G systems will have to deal with a large number of connected devices at the same time,

of different types and with different requirements. Scenarios, such as very crowded places (e.g.,

stadiums or open air festivals) and regions with massive deployment of sensors and actuators, must

be addressed in terms of connectivity. The target is to deploy a 100-fold gains in terms of possible

number of simultaneously connected devices and still be able to provide rates of upto 20 Mb/s in

the worst case scenario.

RAN Latency In order to give the zero-distance sensation to the end user, latency over the radio access

network (RAN) should be less than 1 ms (5 times less when compared to LTE-A). This would

enable the possibility for applications such as augmented reality, tactile Internet or even real-time

control of machine systems.

Cost With the existing technologies, energy consumptions are following the same trend as the data

traffic - an exponential growth. The vision for 5G systems should be more energy-oriented at the

device, site and network levels, requiring the usage of efficient components, advanced modulation

techniques and near optimal resource allocation algorithms.

As seen in the points described above, future generations will require drastic gains over current

solutions. A viable option to tackle this problem is the combined use of more spectrum, higher spectral

efficiency and network densification, leading to an overall reduced cost per bit. Improvements in these

three directions could lead to the fulfilment of the desired goals. For the sake of demonstration, a simple

example shall be looked at. Consider a given area where the network throughput is to be increased by a
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thousand times. Making use of the three degrees of freedom described before, one has [9]:

Throughput︸ ︷︷ ︸
bit/s/Area

= Available spectrum︸ ︷︷ ︸
in Hz

·Cell density︸ ︷︷ ︸
Cell/Area

·Spectral efficiency︸ ︷︷ ︸
bit/s/Hz/Cell

. (1.1)

An increase of ten times in each direction, for instance, would meet the required performance. An

illustrative example of this can be seen in figure 1.2, which includes some of the techniques that will be

discussed in the next section.

Current 
Capacity

Required Performance

Network Densification
Seamless Handovers

Phantom Cells
Device-to-Device

Spectrum Efficiency
NOMA

Full-Duplex
Massive MIMO

Spectrum Extension
Carrier Aggregation

FBMC
mmWave

Figure 1.2: Cube representing the possible paths to attain the required capacity and some technologies
currently being studied.

1.1.2 5G Design Aspects

As stated in the previous section, some of the challenges and requirements for the next generation mobile

networks are already established. The techniques proposed by the industry which are potentially capable

of satisfying those demands are going to be described here. Bear in mind that 5G is still a concept and

hence the key technologies that will effectively be implemented are yet to be defined; every path is open.

However, there is the need for an heterogenous network (HetNet), which means 5G will have to ”play

nicely” with previous generations. Even though successive optimisations over the current network might

cover some of the defined requirements, they will not suffice to accomplish the desired goals.

A crucial point in future deployments will be the usage of frequency bands above 3 GHz [10, 11], as

below this value the spectrum usage is already saturated. The use of higher frequency carriers, denoted

by millimetre waves (mmWaves), means more bandwidth is available, hence it becomes easier to attain

the so desired higher data rates. So far, these bands were not used for mobile communications due to

their large attenuation. However, if network density is increased, then distance between users and serving

cells is reduced, enabling the use of these frequencies. Notwithstanding this fact, ultra-densification may
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lead to unbearable levels of interference and, ultimately, zero throughput [12]; hence, a careful network

planning is mandatory. Additionally, current modulation and detection schemes may not be optimum in

these high frequency bands and, thus, new and more efficient waveform designs will be required.

The possible solutions described in the last paragraph will most likely require a new radio access

technology (RAT), which has to have the capability of interworking with current systems. Therefore and

in the following decades, cognitive radio networks will be of paramount importance in the maximisation

of both spectrum and energy efficiencies. Some of the key features that could be implemented into the

5G radio access are [8]:

Phantom Cell The idea, proposed by DOCOMO, is to add a capacity layer to the coverage layer via the

introduction of low power nodes in high traffic areas. These small cells would use higher frequen-

cies for increased performance and throughputs. The control signalling and handover management

would still be responsibility of a macro cell using lower frequencies.

Flexible Duplex One of the advantages of a cognitive radio network is its flexibility in terms of utilised

carrier frequency and duplex scheme. The use of a smart combination of time division duplex

(TDD) and frequency division duplex (FDD) schemes, along with an opportunistic carrier selection

will play a key role in the 5G RAT.

Waveform Design 5G systems will use different spectrum bands, having different propagation condi-

tions, and, thus, different requirements modulation-wise. While much of the processing could

be optimisations of LTE-based schemes (e.g., OFDM2), some alternatives such as single carrier

waveforms or other advanced multi-carrier waveform (e.g., filter bank multicarrier (FBMC) and

generalised frequency division multiplexing (GFDM) [13, 14]) can also be utilised to prioritise

coverage and support wider frequency bands as well as new scenarios.

Massive MIMO Multiple-input multiple-output (MIMO) systems with multiple antennas at the trans-

mitter and receiver are already used to achieve higher capacity and link reliability by the exploita-

tion of both spatial multiplexing and diversity. In order to deliver the required data rates, the use

of antenna arrays with a very large number (tens to hundreds) of elements might become a reality.

This technology will allow a much higher spectral efficiency with decreased energy levels, whilst

serving a large number of users at the same time [15].

JSDM Another degree of freedom to be exploited is the correlation of the channels of the different

users. Joint spatial division and multiplexing (JSDM) [16] to be used in multiuser MIMO down-

link applies a clever pre-beamforming scheme that partitions users with approximately the same

channel into groups. Hence, the transmitted signal may be designed in such a way that intergroup

interference is minimised, leading to even higher spectral efficiencies.

2Orthogonal frequency-division multiplexing.

5



NOMA Hitherto an effort to use orthogonal signalling to differentiate users has been made (e.g., TDMA3,

CDMA4 and OFDMA5). Non-orthogonal multiple access (NOMA) [17] methods are being stud-

ied in order to meet the various requirements of next generation networks. The idea is to transmit

data from different users in the same slot (time and/or frequency) and by exploiting the power-

domain (different path losses), advanced successive interference cancellation schemes can be used

to successfully decode the transmitted data.

It is worth mentioning that the aim of any of these solutions is to either increase spectral efficiency

or cell density, leading to higher throughputs for a larger number of devices. Moreover, they can be

implemented together and be integrated with current technologies. An example of this type of combined

solution is proposed in [18], where the benefits of a full-duplex relay station equipped with massive

MIMO are presented. In the paper it is shown that, in theory, it is possible to efficiently serve a large

number of users, while using very simple linear processing techniques and power allocation schemes

with close to optimal performance. In the next few years, further technical studies and field experiments

will have to be performed in order to bring the 5G concept into the real world.

1.2 Goals and Structure of this Document

In a succinct manner, the main objective of this thesis is the study and consequent implementation of

algorithms that are suitable for large MIMO systems. Among other fields, this work includes the study

of MIMO fundamentals, the benefits of scaling up MIMO, the understanding and implementation of ex-

isting state-of-the-art algorithms and a consequent comparative study. New methods and slight variations

of the analysed algorithms are going to be proposed here. The development of this research project will

involve knowledge from a large variety of signal processing techniques, such as lattice reduction, Markov

chain Monte Carlo (MCMC) methods, and advanced matrix theory. When the author finds the topic to

be out of the scope of the thesis, the reader will be referred to the proper bibliography. Nonetheless, the

basic definitions and appropriate notation will be present when needed. Furthermore, and when the au-

thor finds it suitable, concepts and analytical results will be supported by graphics, tables and numerical

outputs from simulations.

The organisation of this document in terms of chapters and respective contents will be as follows:

Chapter 2 - MIMO Overview: In chapter 2 a brief overview of MIMO systems will be given, includ-

ing a review of fundamental concepts and an outline of the most utilised models in MIMO. The

advantages of conventional MIMO will then be presented, along with the benefits and challenges

that come up when one tries to scale up these systems to larger dimensions. The chapter ends with

a concise section on existing cutting edge massive MIMO prototypes and testbeds.
3Time division multiple access.
4Code division multiple access.
5Orthogonal frequency-division multiple access.
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Chapter 3 - MIMO Detection: The outcomes of literature review on both conventional and state-of-

the-art MIMO detection will figure in chapter 3. This includes the review of some fundamental

concepts in MIMO, followed by a brief introduction to the most used linear and non-linear detec-

tion techniques, including lattice reduction and randomised algorithms.

Chapter 4 - On the Massive MIMO Effect The advantages of increasing the number of antennas from

a theoretical point of view are going to be described in this chapter. In particular, the channel

hardening effect is described and exploited to construct near optimal, low complexity algorithms

to perform both detection and precoding.

Chapter 5 - Symmetric Large MIMO Detection In this chapter, two state-of-the-art approaches to op-

timally solve the detection problem for symmetric large MIMO systems are considered. Firstly, a

suitable lattice reduction method is reviewed and compared against conventional receivers. Sec-

ondly, a randomised algorithm based on the Gibbs sampling technique is studied, optimised and

set side by side with the former.

Chapter 6 - Application of Massive MIMO A massive MIMO enabled full-duplex relay is considered

in chapter 6. Filters to perform interference suppression, detection and precoding are jointly de-

signed. The advantages of such setup are evaluated in terms of spectral efficiency, bit error rates

and achievable throughputs. Further, an optimal power scheme yielding low complexity to satisfy

individual pair rates is proposed.

Chapter 7 - Conclusions In the last chapter of this thesis, an overview of the most important results is

conducted. In addition, some suggestions for possible follow-up research are left.

1.3 Contributions

The original contributions of this research work are presented in the final sections of chapters 4, 5 and 6.

They can be summarised as follows:

Fast Matrix Inversion Updates By exploiting the channel hardening effect, Neumann series can be

efficiently used to approximate the inverse matrices required in linear detection techniques. To

further reduce complexity, two algorithms based on the matrix inversion lemma for a fast recom-

putation of the inverse are proposed in chapter 4, and for the first time in the context of massive

MIMO. In particular, the impact of the updates after the approximation in the performance is

numerically evaluated. This part of the work resulted in the following submission:

• F. Rosário, F. Monteiro, and A. Rodrigues, ”Fast Matrix Inversion Updates for Massive MIMO

Detection and Precoding,” submitted to a scientific journal, May 2015.

Optimised MCMC techniques based on Gibbs sampling Randomised algorithms, namely MCMC

techniques, can be effectively used to find close to optimal solutions in a variety of problems.
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In chapter 5, a thorough evaluation of these methods to perform MIMO detection using a Gibbs

sampler is conducted. Specifically, the stalling problem is identified and techniques to circum-

vent it are reviewed. Further, it is concluded that convergence rates are highly dependent on the

”temperature” parameter and, based on the obtained results, a variant that proves to be faster is

suggested. This part of the work resulted in the following submission:

• F. Rosário, F. Monteiro, and A. Rodrigues, ”Triple Mixed Lattice Gaussian Sampling Method

for Large MIMO Detection,” submitted to a scientific journal, June 2015.

Filter design for an end-to-end transmission supported by a full-duplex relay Full-duplex relays

can in theory double spectral efficiencies over conventional wireless systems. However and

without compromising neither direct or reverse links, loopback interference must be mitigated.

In chapter 6, this problem is mathematically described and jointly designed filters to suppress

interference and forward information are proposed. In addition, a low-complexity linear optimal

power allocation scheme based on the individual throughput requirements is contemplated. This

part of the work resulted in the following submission (accepted, presented, and published):

• J. S. Lemos, F. Rosário, F. Monteiro, J. Xavier, and A. Rodrigues, ”Massive MIMO Full-

Duplex Relaying with Optimal Power Allocation for Independent Multipairs,” in IEEE Proc. 16th

International Workshop on Signal Processing Advances in Wireless Communications (SPAWC),

June 2015, pp. 306–310.
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Chapter 2

MIMO Overview

In this chapter both fundamentals and theoretical advantages of the MIMO channel will be provided. In

addition, an introduction to the benefits and arising issues when the number of antennas is increased will

be provided.

2.1 Introduction

In wireless communications the traditional structure of a link is composed of a single antenna at both

transmitter and receiver sides. This system, denoted as single-input single-output (SISO), was widely

used in the past few decades for both mobile and fixed communications. However, due to the increasing

required data rates and capacity for the same available bandwidth, approaches with increased spectral

efficiencies were required. In 1996, Foschini demonstrated that this was possible from a practical point of

view with the widely known transceiver architecture denoted as V-BLAST1 [19]. From there on, a sheer

amount of MIMO related contributions were made, addressing different aspects such as channel coding

and estimation, capacity computation, multiple-access schemes and detection/precoding algorithms.

Today, MIMO technology is implemented in a variety of wireless applications, such as Wi-Fi

(802.11ac), LTE-A and WiMAX2, supporting much higher data rates than the conventional SISO. Yet,

there are a set of constraints that are limiting conventional MIMO systems to be limited to eight antennas

on both transmit and receiving sides. The idea for future wireless communication networks is the usage

of a large to a massive number of antennas at the serving base station, which will, in theory, fulfil part of

the requirements defined in section 1.1.1.

2.2 Channel Model

In a wireless link, signals are transmitted with the help of a carrier wave which has a defined centre

frequency and average power. Even though the choice of the carrier affects the system performance, from

1Vertical-Bell Laboratories layered space-time.
2Worldwide interoperability for microwave access.
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a signal processing perspective, one is only interested in the discrete samples of the complex baseband

equivalent signal. For the characterisation of the wireless medium, an uplink scenario will be considered,

where NT single-antenna users transmit NT complex symbols x ∈ CNT×1 from a given constellation.

The transmitted signals will pass through the wireless medium, denoted as channel and defined by the

matrix H ∈ CNR×NT , with entries hij corresponding to the gain between jth transmit antenna and ith

receive element. Furthermore, the received sampled vector y ∈ CNR×1 will be affected by additive

noise, denoted as n ∈ CNR×1. Hence, the received vector can be written as:

y = Hx + n. (2.1)

This is the channel that is mostly used in the literature and accepted as a good enough approximation to

reality, as long as H and n statistics are modelled accordingly. Moreover, the following simplifications

and assumptions are often made:

• The transmitted signal is narrowband enough so that the channel can be considered frequency-

nonselective.

• The channel is modelled as slow-fading which means that H is constant for the duration of a

coding block (tens to thousands of channel symbols).

• Antenna elements are spaced sufficiently far apart such that the entries of matrix can be modelled

as independent and identically distributed (i.i.d.) Gaussian random variables with zero-mean and

unit variance, that is hij ∼ CN (0, 1) (this model is also denoted in the literature as Rayleigh

fading).

• The additive noise is considered independent in each radiofrequency (RF) chain and modelled as

circularly symmetric complex Gaussian vector for every frequency component, such that E{n} =

0 and E{nnH} = σ2nI. In the literature, a perturbation with these characteristics is often denoted

as additive white Gaussian noise (AWGN).

• The total transmitted power is constrained to P , that is tr{Q} ≤ P with Q = E{xxH}. For

independent input data the covariance comes as Q = σ2xI, where σ2x represents the average symbol

power.

• Perfect information of the channel matrix H, denoted as channel state information (CSI), is often

considered to be known at the receiver (CSI-R). Due to the inherent complexity in estimating CSI

at the transmitter side (CSI-T), it is generally not considered to be available. Furthermore, perfect

CSI is impossible due to the existence of noise, interference and hardware impairments. When

imperfect CSI is considered, H entries can be decomposed in hij = ĥij + h̃ij , where ĥij is the

estimated gain and h̃ij the associated error.
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• Transmitted symbols x are often picked from an M -ary quadrature amplitude modulation (M -

QAM). To guarantee symmetry in the constellation, M is chosen as an even power of two, that is

M = 22n, with n being an integer.

These assumptions offer a very simplified characterisation of the channel, whose representation is pre-

sented in figure 2.1. Despite not entirely realistic, its main advantage is its ease of implementation; hence,

it is widely used for performance comparisons in the literature (e.g., when comparing channel estimation

or detection algorithms). What is more, the signal-to-noise ratio (SNR) per transmit antenna, denoted as

SNRa, in this model is straightforward to compute [20]:

SNRa =
σ2x
σ2n
, (2.2)

which is interpreted as the ratio between the average power of one transmitted symbol and the variance

of the noise.

Obviously, other MIMO channel models trying to approximate reality with more precision exist. For

instance, these models may consider scenarios where a line-of-sight (LOS) path is available, channel ma-

trix entries are correlated or where the received signals resulted from a different number of scatterers [21].

Base
Station
Detector

Figure 2.1: Multiuser MIMO uplink channel with NT transmit and NR receive antennas.

2.3 MIMO Channel Capacity

When the number of transmit and receive antennas is increased, one hopes to improve the achievable rates

of the system, denoted as capacity and measured in bits per second per Hertz (bps/Hz). In order to do the

necessary computations assume a single-user MIMO (SU-MIMO) scenario, where the channel statistics

are as in the previous section (extension to multiuser (MU-MIMO) is similar). Furthermore, assume that

the input vector x is i.i.d. complex Gaussian. From information theory results and under the previously

stated assumptions, it is widely accepted that the expression for MIMO open-loop instantaneous capacity
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comes as [22]:

C = log2 det(I + SNRaHHH). (2.3)

Note that if CSI-T is available (closed-loop), optimal power distribution over transmit antennas methods,

also known as waterfilling algorithms, can be performed, resulting in higher achievable capacities [23].

However, CSI-T is usually hard to obtain and, hence, it will not be considered in this work, unless

otherwise stated. In order to gain insight into how capacity scales with the number of antennas, two

distinct scenarios will be considered in the following subsections.

2.3.1 Capacity in the Low-SNR Regime

In the first analysed situation we consider a low-SNR regime at the receiver side with SNRa → 0. This

can also be seen as the case where LOS propagation conditions impose that the transmit array cannot

resolve individual receive elements (and vice-versa), resulting in a matrix H with low rank, which is

denoted as r. From (2.3) we have that [21, Chapter 2]:

C = log2 det(I + SNRaHHH) = log2

r∏
i=1

(
1 + SNRaλ2i (H)

)
(2.4)

≈ log2

(
1 +

r∑
i=1

SNRaλ2i (H)

)
= log2

(
1 + SNRatr{HHH}

)
≈ SNRatr{HHH} log2 e, (2.5)

where λi(H) represents the ith eigenvalue of matrix H. The dominance of linear terms and the fact

that log2(1 + x) ≈ x log2 e for small x were used in the first and second approximations, respectively.

Computing now the ergodic capacityCe, defined as the average behaviour over time of (2.3), one is led to:

Ce = E{C} =SNRaE{tr{HHH}} log2 e (2.6)

=NRNTSNRa log2 e, (2.7)

where the fact that E{tr{HHH}} = E{
∑NR

i=1

∑NT
j=1 |hij |2} = NRNT was used. This equation shows

that on average, and for low-SNR scenarios, capacity scales with NR.

2.3.2 Capacity in the High-SNR Regime

When high-SNRs are available or analogously propagation conditions are favorable (similar eigenvalues

λi(H) ), equation 2.3 evens out to [21, Chapter 2]:

C =E
{min(NT ,NR)∑

i=1

log2(1 + SNRaλ2i (H))

}
(2.8)

≈min(NT , NR) log2(SNRa) +

min(NT ,NR)∑
i=1

E{log2 λ
2
i (H)}, (2.9)
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where the approximation log2(1 + x) ≈ log2(x) for large x was used. Under these conditions, one

reaches the conclusion that capacity scales with min(NT , NR), which is a good result but that requires

antennas at both transmitter and receiver sides. Despite the made simplifications, the results herein

presented are promising and already exploited by many wireless communication systems. As will be

seen in the following sections and chapters, the unbounded increase in the number of antennas brings

new challenges that are still being identified and under intensive research.

2.4 Large MIMO Systems

Thus far it has been seen that with conventional MIMO we can, using the same amount of power as

in the SISO counterpart, have a more reliable link and increased sum-rates. Today’s systems employ a

number of antennas between 2 and 8, achieving spectral efficiencies of less than about 30 bps/Hz [24].

In the future, when a large number of spatial dimensions (tens to hundreds of antennas) is utilised, both

opportunities and challenges will arise. Some of these features will be reviewed in this section.

Large MIMO systems typical application scenarios will be regions with a dense deployment of ter-

minals that need to be connected simultaneously. Possible examples of these are multibeam satellite and

cellular networks beyond LTE-A, which may include coverage for both mobile terminals and local area

networks (LAN) [25]. As seen in the previous section, more antennas means more degrees of freedom,

which means small-scale fading, noise and hardware impairments can all be averaged out [26]. What was

random tends to become more deterministic as the number of elements increases. Furthermore, under

perfect CSI-R the total transmitted power by each user can decrease by a factor of NR [27] (
√
NR in the

case of imperfect CSI-R) and, as long as NR >> NT , linear receivers may achieve near-optimal per-

formance whilst yielding low complexity [20, Chapter 10]. However, considerable technical challenges

need to be addressed in realising such large MIMO systems. Some of these limiting factors are [28]:

Independent spatial dimensions To take full advantage of a large number of antennas, received signals

at different elements should take different paths in the wireless medium. However, this effect

denoted as rich scattering, does not always occur. Scenarios where an LOS is available or the

pin-hole3 effect is present will, therefore, degrade the capacity of the MIMO channel. Due to the

diversity of physical environments (e.g., indoor, urban, rural) channel sounding measurements will

be of extreme importance in order to characterise practical propagation environments. Some of the

possible configurations for large MIMO systems can be seen in figure 2.2.

Antenna placement and RF chains The idea for large MIMO systems is to put small, inexpensive

hardware in BSs and possibly terminals. This, in turn, will raise issues such as spatial correla-

tion and reduced radiation efficiency due to the small inter-element spacing (a spacing of more

than λ/2 is usually recommended). Moreover, tens to hundreds of RF chains, up/down converters,
3Pinhole channel is interpreted as the one where scattering energy travels through a very thin air pipe, preventing channel

rank from building up [29].
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Figure 2.2: Possible antenna arrangements for base stations using large MIMO (reproduced from [30]).

A-D/D-A4 converters will be needed to feed the antenna elements [30]. Low-cost hardware will

result in more likely imperfections leading to higher phase-noise, I/Q5 imbalance and levels of

quantisation noise. Possible approaches to mitigate these issues are, for example, higher carrier

frequencies (decreased wavelength) [28] and spatial modulation [31], which is able to maintain

high spectral efficiencies while reducing the number of needed RF chains.

Signal Processing Complexity Even though mobile processing power has increased over the past few

years, it will be important to keep algorithms’ complexity low so that experienced delay is min-

imised. In a transmission system there are algorithms for channel coding, estimation, precoding,

synchronisation, detection and waveform modulation. Hence, it is necessary to research new ways

to achieve the objectives with implementable and efficient hardware.

Multicell operation and CSI-T Due to the expected aggressive reuse distance in 5G systems, it is nec-

essary to manage resource allocation, intercell interference and BS cooperation ingeniously. For

example, in a multicell MU scenario non-orthogonal pilots must be utilised [32], since orthogonal

signalling would be infeasible for a large number of cells, leading to pilot contamination [33]. This

will culminate into imperfect CSI, hindering the overall system capacity.

These are some of the challenges and they are interdependent in the sense that maximising one

objective may result in the degradation of another (e.g., increasing spectral efficiency implies increasing

power that for instance reduces energy efficiency). Consequently, subjective trade-offs between the

objectives must come into play, since there is no global optimum but rather local optima [34]. What is

more, different scenarios have different subjective optima that systems must be able to identify and adapt

on-the-fly (e.g., in low-demand periods energy efficiency should be prioritised over spectral efficiency).

4Analog-to-digital and digital-to-analog.
5In-phase/quadrature.
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2.5 Prototypes and Testbeds

In order to validate theory, researchers need to move from analytical work into the development of

testbeds and prototypes. Only in this way, it is possible characterise real-world propagation conditions

and determine the feasibility and commercial viability of large MIMO systems [35]. These prototypes

often require a huge amount of investment in terms of money, time, resources and knowledge from

a wide range of fields of expertise. For this reason, only top-tier, well funded research universities and

some companies are able to develop their own frameworks, which must be versatile, flexible and scalable

enough [35] to actually become cost-efficient in the long run.

One of the latest, cutting edge prototypes the author is aware of (announced October 2014) is the

result of a partnership between Lund University (Sweden) and National Instruments (NI) [36]. The highly

adaptable 100-antenna prototype incorporates simultaneously the award-winning LabVIEW software

[37] and the state-of-the-art NI USRP RIO SDRs6. Even though performance results are not available as

of yet, the system parameters include an RF center frequency that may oscillate between 1.2 and 6 GHz

and an impressive sampling rate of 30.72 MS/s [35]. A picture of the system, including both array and

USRPs, is presented in figure 2.3(a).

In July 2014, Ericsson (in association with NTT DOCOMO) made a live, over-the-air demonstration

in the company labs located in Kista (Sweden) where they were able to achieve 5 Gbps in the 15 GHz

frequency band. Despite the lack of further technical details, their report mentioned that the ”demonstra-

tion employs an innovative new radio interface concept and advanced MIMO technology to achieve the

record-breaking results” [38].

On a smaller scale but equally important, channel measurement campaigns for different antenna con-

figurations have been conducted in recent years and the results are very promising. Most of the studies

state that performance in a large variety of scenarios is close to theoretical results and that orthogonality

improves with increasing number of antennas [39–42]. Moreover, in addition to the planar array configu-

ration, cylindrical and compact arrays (such as cubes) are also being experimented with coherent results

[41, 43–45]. Some of these prototypes are depicted in figure 2.3.

2.6 Concluding Remarks

In this chapter, a brief introduction to the MIMO channel has been provided, and expressions for the

underlying increase in capacity have been outlined. Further, both advantages and limiting obstacles yet

to be faced in large MIMO systems have been presented. In the remaining chapters of this thesis, some

of these problems will be detailed, whilst the gains provided by massive MIMO will be exploited in order

to construct low complexity, near optimal methods.

6National Instruments universal software radio peripheral RIO software defined radio.
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(a) Custom cross-polarised patch 100-antenna array developed
in Lund University, in association with National Instruments (re-
produced from [35]).

(b) 25-antenna array presented as part of
METIS project optimised to function in the
2.3 GHz band (reproduced from [46]).

(c) 128-cyllindrical array used to
measure propagation characteristics
for very-large MIMO at 2.6 GHz (re-
produced from [41]).

(d) Argos: a base station architecture employing 64 antennas (reproduced from
[43]).

Figure 2.3: Massive MIMO array prototypes.
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Chapter 3

MIMO Detection

In this chapter a brief overview of the fundamentals of MIMO detection will be first conducted. Secondly,

an introduction to the various existing families of detectors will be provided, including both conventional

and state-of-the-art receivers.

3.1 Introduction

A preponderant aspect of any communication link is the effectiveness of its detection algorithm. Pro-

vided some knowledge of the channel is available at the receiver side, one is to design low complexity

algorithms to retrieve information from the transmitted symbols. A lower complexity means a reduced

number of arithmetic operations, which leads to reduced latency and increased power efficiency. How-

ever, when reducing complexity, the designer might be compromising on the performance of the system

(e.g., decreasing the diversity gain), which might be undesirable. Since optimal detection is prohibitive

for large MIMO systems due to its exponential complexity, sub-optimal approaches must be consid-

ered, studied and compared. An overview of the different possible approaches will be conducted in this

chapter.

Another motivation for the exhaustive research in detection algorithms is the fact that communication

standards do not impose how network providers design their receivers. This fact opens up the opportu-

nity for the implementation of adaptive equalisers, able to adjust themselves according to the required

objectives at any given time. Thus, depending on the propagation conditions and loading factors, the use

of hybrid detectors may become a very efficient alternative in the long run [47].

In addition to the complexity-performance trade-off, there are a set of other constraints in the design

of detection algorithms. For instance, these methods should be hardware-friendly, scalable in terms of

production and robust to finite-numerical resolution (fixed-point). All these aspects should, whenever

possible, be taken into account, be incorporated in the simulation environment and carefully evaluated.
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3.2 Detection Fundamentals

In the following analysis, the channel model described in section 2.2 will be used and, unless otherwise

stated, perfect CSI-R will be considered. The purpose of a MIMO detector is to decode the NT streams

that were transmitted and mixed by the channel. Under the assumed scenario, performance will be very

dependent on the conditioning of matrix H and noise average power σ2n. In this section the essential

definitions to assess the behaviour of the various detectors will be presented.

One of the essential parameters to characterise the expected performance of a detector is the orthog-

onality deficiency of the channel matrix H.

Definition 1 (Orthogonality Deficiency [47]). For an NR ×NT matrix H = [h1,h2, ...,hNT
], with hn

being the nth column of H, its orthogonality deficiency (od(H)) is defined as

od(H) = 1− det(HHH)∏NT
n=1 ‖hn‖2

, (3.1)

where ‖hn‖ is the norm of the nth column of H.

The metric in (3.1) is a measure of the orthogonality of the column vectors in matrix H, it is bounded

by 0 ≤ od(H) ≤ 1 and takes minimum and maximum value when H is orthogonal and singular,

respectively.

The parameter that measures how much the transmitted symbol power is above the additive noise at

the receiver is the SNR.

Definition 2 (Signal-to-Noise Ratio). For a transmitted vector x ∈ CNT×1 with covariance matrix

E{xxH} = σ2xINT
and an additive noise vector n ∈ CNR×1 distributed as CN (0, σ2nI), the average

input SNR is defined as:

SNR = NT
σ2x
σ2n
. (3.2)

SNR is usually defined in logarithmic scale and widely used to study bit error rate (BER) performance

in communication systems. For that purpose, the evolution characteristics of BER as a function of the

SNR are often depicted and are used in the literature to evaluate the diversity order gain of the technique,

denoted by Gd.

Definition 3 (Diversity Order Gain). Designate the average error probability, which is function of the

SNR, as Pe(SNR). The diversity order gain Gd is then defined as [47]

Gd = lim
SNR→∞

− logPe(SNR)

log SNR
. (3.3)

Graphically, Gd is interpreted as the minus asymptotic shape of the BER versus SNR and the maxi-

mum value it can take is Gd,max = NTNR, in the case of uncorrelated fading [20, Chapter 2], as will be
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verified in the next section. Another useful metric is the multiplexing gain, which represents the increase

of the spectral efficiency with the SNR, for a given BER.

Definition 4 (Spatial Multiplexing Gain). Let {C(SNR)} be a family of codes of block length l one

at each SNR level, and R(SNR) be the rate of the corresponding code. Then, the achievable spatial

multiplexing gain Gm of the scheme is defined as [48]

Gm = lim
SNR→∞

R(SNR)

log(SNR)
. (3.4)

This parameter shows how capacity increases with SNR and is associated with the maximum number

of independent subchannels (or layers), being upper bounded by Gm ≤ min(NT , NR). For a fixed BER

value, the multiplexing gain Gm measures how fast spectral efficiency can improve with the increase

of the SNR while keeping the same error rate [20]. In the next section, further insight into the last two

defined terms will be provided.

3.3 Diversity and Multiplexing - A Trade-off

Even though not entirely obvious, it can be shown that a multiple-antenna system has two interdependent

gains [48]. For the sake of demonstration, consider the slow Rayleigh fading wireless link withNT trans-

mit and NR receive antennas. If the same signal is transmitted in the NT antennas, multiple independent

faded replicas of the same symbol are received, resulting in a more reliable reception. This improvement

in reliability is called diversity and for the considered scenario this advantage is expressed in the average

BER which, in the high SNR regime, is made to decay with SNR−NT (better than the SISO counterpart

SNR−1).

Another possible approach is to send different data streams through different antennas and if indi-

vidual transmit/receive pairs fade independently, the data rate can be increased by a given amount Gm.

This technique is called spatial multiplexing and, for a fixed high SNR, capacity was shown to scale with

min(NT , NR) (as verified in section 2.3.2).

Succinctly, MIMO systems provide two types of gains: diversity and spatial multiplexing. These

are correlated in such a way that maximising one may not necessarily maximise the other. However,

the trade-off between them and its interpretation can be expressed in a simple manner for most system

parameters of interest. Consider the above scenarios and that the block length satisfies l ≥ NT +NR−1,

for a multiplexing gain Gm the maximum achievable diversity gain is precisely (NT −Gm)(NR−Gm).

This result can be interpreted as Gm antennas provide multiplexing gain, whereas the remaining are

used for diversity. Therefore, there is a fundamental trade-off between the two possible gains and that

researchers have been trying to maximise for the past few decades. In this work and otherwise stated,

no coding schemes will be employed and therefore, the study of the performance of the detectors will be

solely based on their diversity gain.
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3.4 Optimal Detection

As stated previously the objective of a receiver is, from the given data y and channel H, to obtain an es-

timate of the transmitted message x. Assuming x is chosen uniformly from a constellation (or alphabet)

A, the detector that minimises the error probability P (x 6= x̂|y,H) is called maximum likelihood (ML)

and is given by

x̂ML = arg min
x̂∈ANT

‖y −Hx̂‖, (3.5)

where x̂ is the estimated vector. Geometrically, ML chooses the vector x̂ that yields the smallest Eu-

clidian distance between received vector and conjectured message Hx̂. This is equivalent to a discrete

optimisation problem over |A|NT candidate vectors, hence resulting in an exponential complexity with

the number of transmit antennas [49, 50] (NP-hard problem). Even though ML attains optimal per-

formance (maximum diversity), its complexity is impractical for larger dimensions and constellations.

Therefore, suboptimal approaches will be introduced and briefly compared in the next sections.

3.5 Linear Detection

In order to separate the various NT substreams, linear equalisation schemes can be employed. This is

achieved by multiplying the received vector y with the equalisation matrix AH followed by a slicer1

Q(·) in the following way:

x̂ = Q(AHy). (3.6)

This family of detectors have the advantage of being easy to implement and yielding low complexity at

the expense of not collecting the same diversity as ML. The most conventional linear detectors (LD) will

be presented in the next subsections.

3.5.1 Matched Filtering

The simplest form of receiver is the matched filter (MF) as it treats interference from other substreams

as purely noise by making A = H. The MF estimates are, hence, given by (apart from a normalisation

factor):

x̂MF = Q(HHy). (3.7)

Computing the above expression yields O(NTNR) operations, which is rather attractive. However, it

only works properly for scenarios where NT << NR, as performance is severely degraded by the

contributions of uncanceled interference when load increases.

1The slicer returns the nearest neighbour in the constellation being used.
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3.5.2 Zero-Forcing Detection

Another LD family is the zero-forcing (ZF) methods, which impose inter-user interference to zero at

the expense of an increase in noise (denoted as noise enhancement). This is achieved by designing the

equalisation matrix as [51]:

AH
ZF = (HHH)−1HH = H†, (3.8)

where (·)† denotes the Moore-Penrose pseudoinverse of a matrix [52]. After equalisation, the noise level

is changed, resulting in an output SNR for the nth symbol given by [53]:

SNRZF,n =
SNR

[(HHH)−1]nn
, (3.9)

where [·]nn denotes the nth diagonal element. Generally, ZF performs better than the MF, is only optimal

when od(H) = 0 and it requiresO(N3
T )+O(N2

TNR)+O(NTN
2
R) multiplications and the same amount

of additions [47] to equalise the received vector. In terms of diversity gain it is shown that it can achieve

NR −NT + 1, which is still NT − 1 times less than what ML can attain [54].

3.5.3 Minimum Mean-Square Error Detection

The linear detector whose transformation matrix objective is to minimise the mean-square error (MSE)

between the transmitted and transformed received vector is called minimum mean-square error (MMSE).

It can be formulated as:

AH
MMSE = arg min

U
E{‖x−UHHy‖2}, (3.10)

with closed form solution given by [55]:

AH
MMSE = (HHH +NTSNR−1I)−1HH . (3.11)

As can be inferred from (3.11), this detector requires knowledge of the SNR but will perform better than

ZF in the medium to high-SNR regimes. This is due to the reduced noise enhancement given by [53]:

SNRMMSE,n =
SNR

[HHH +NTSNR−1I]nn
− 1 = SNRZF,n + ηSNR,n, (3.12)

where ηSNR,n is a non-vanishing random variable, statistically independent of SNRZF,n and that con-

verges with probability one to a scaled Fisher–Snedecor distribution [56, Chapter 20](for more informa-

tion on the distribution properties, see [53]).

In spite of the non-vanishing SNR gap between ZF and MMSE filters, ultimately, when SNR → ∞
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[53], the average ε-outage capacities2 converge to the same value [57], that is:

lim
SNR→∞

CMMSE(ε)− CZF (ε)→ 0. (3.13)

Furthermore, MMSE will not improve on either the diversity gain (which is still NR−NT + 1) or on the

complexity and will, hence, suffer the same problems as ZF in larger dimensions.

3.6 Non-linear Detection

As seen in the previous section, LDs are not able to collect diversity in symmetric large-scale systems

(NT = NR) due to the loss of mutual information. As a consequence, non-linear methods to cancel

interference across different layers have been widely studied in the literature. Popular techniques include

successive and parallel interference cancellation (SIC and PIC, respectively). Henceforth, due to its

simplicity, only SIC detectors will be considered.

3.6.1 Successive Interference Cancellation

The purpose of the SIC is to successively decode the different layers (using either ZF or MMSE) and

cancel the effect of the estimated symbol from the received signal, assuming it was correctly detected.

In order to further improve their performance, one possible approach is to always decode the symbol

with the highest SNR, resulting in a need to find the optimal detection order. This method is often called

Ordered-SIC (OSIC) but in the literature it is mostly known as V-BLAST3[19].

Performance-wise, the diversity gain attained by the OSIC in the ith layer is now NR−NT + i [59],

leading to an improved diversity gain in the low to moderate SNR. However, in the high SNR regime the

outage probability is dominated by the first detected layer and diversity is stillNR−NT +1. Nonetheless,

there is still a considerable gain in the SNR, since at each iteration the detection is subject to one less

interferer [53] (assuming previous estimations were correct). The maximum expected gain in the SNR

when compared to the conventional linear detectors is shown to be around 10 log10NR dB [53].

3.6.2 Lattice Reduction-Aided Algorithms

So far and despite their low complexity, none of the studied detectors (apart from ML) was able to achieve

full diversity. This is often in part due to the bad conditioning of the channel matrix H (high od(H)). The

aim of lattice reduction-aided (LRA) methods is precisely to transform H into a new, more orthogonal

basis H̃ = HT, with T being a unimodular matrix [60]. Hence and interpreting the columns of H as

the basis of a lattice, the purpose of the LR algorithm is to find the vectors of shortest length, which will

2Here, the ε-outage capacity is defined as the maximum supportable rate under the restriction that the outage probability is
no greater than ε.

3This architecture was available for the first time in 1996 at Bell Laboratories in New Jersey in the United States, achieving
spectral efficiencies ranging from 20–40 bit/s/Hz [58].
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result in a lower orthogonality deficiency and as a consequence better performance when linear detection

is applied.

Before proceeding and because it will be important in the subsequent chapters, some real-lattice

theory shall now be presented.

Definition 5 (Primal Lattice). Let h1,h2, ...,hNT
be a linearly independent set of vectors in RNR (with

NT ≤ NR) [61]. The set of points

Λ =

{
y ∈ RNR : y =

NT∑
i=1

hixi, xi ∈ Z

}
(3.14)

is called a lattice of dimension NR and whose vectors h1, ...,hNT
are its basis.

Basically, a set of discrete points in RNR form a lattice (also known as the primal lattice). Geomet-

rically, it can be interpreted as an integral linear combination of the vectors h1,h2, ...,hNT
. Given a

primal basis, its dual can also be defined [20, Chapter 2].

Definition 6 (Dual Lattice). Given a primal lattice Λ with a basis H, the dual lattice is unique and

defined as

ΛD =
{
z ∈ RNT : 〈z,x〉 ∈ Z,∀x ∈ Λ

}
. (3.15)

In words, the dual of Λ is the set of all points whose inner product with any of the points in Λ is

integer [62].

Known LR algorithms include Minkowski reduction, Hermite–Korkin-Zolotarev (HKZ) reduction

[63], Lenstra-Lenstra-Lovász (LLL) and its complex counterparts [64], Seysen’s algorithm (SA) [65]

and element-based lattice reduction (ELR) [20, Chapter 10]. In this section only the algorithms that have

a relevant contribution to MIMO detection (at the present moment) will be considered.

By far, the most used method in the literature is the LLL, mainly due to its polynomial complexity

O(N4
R) and for the fact that its od(H̃) is bounded [20, Chapter 10]. Additionally, the SIC LR-based

detection with LLL can attain full receive diversity orderNR with average complexityO(N3
TNR logNR)

[66], which is still feasible for medium sized systems. An important improvement to the LLL was the

complex-LLL (CLLL) which enabled the use of the method directly in the complex domain and, further,

it is proven to only require half of the arithmetic computations needed by the real counterpart [67].

However, LLL based algorithms may not perform well for larger NR values due to their increasing

asymptotic error [68].

Another important family of LR-based methods are the very recently proposed ELR algorithms. The

underlying idea is to generate an H̃ to reduce the asymptotic pairwise error probability of conventional

detectors. In MIMO detection, this translates to minimising the diagonal elements of the noise covariance

matrix after lattice-reduced is applied [69]. The ELR approach is proven to yield low-complexity while

attaining solid performance even for larger systems and constellation sizes [68] and will be evaluated in

chapter 5.
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3.6.3 Sphere Decoder

In the last sections near-optimal algorithms yielding acceptable complexity were discussed. An optimal

(ML-like) detector shall now be introduced.

A MIMO detection problem is equivalent to finding the closest lattice point in the corresponding

constellation. The concept of the sphere decoder (SD) is to search only through the points that are found

inside a sphere with given radius
√
R [61]. In this way, only the lattice points within the squared distance

R are considered in the metric optimisation and as long as R is properly chosen, it is possible to achieve

ML performance with lower average complexity.

SD can be equivalently seen as a search in a tree, where nodes expected values are dependent of the

channel H, noise variance and estimated transmitted message. Therefore, a large number of branches

might have to be visited before reaching the solution, resulting in a non-fixed complexity. Even though

for many practical problems the complexity may be upper-bounded by a polynomial function, there will

be situations (channel realisations) where SD complexity becomes exponential [70], making it useless for

real-time detection in large MIMO systems. Nevertheless, their performance can be used as a standard

for comparison.

3.7 Detection Based on Local Search

MIMO detection involves a minimisation of the ML cost as in (3.5) and, in larger dimensions, that

computation is unbearable. A possible approach, also utilised in other fields [71], is the local search that

makes use of heuristic techniques. Even though there is no initial guarantee on the quality of the solution,

these methods have demonstrated robust performance in a reasonable amount of time and will therefore

be discussed in this section.

The idea behind detection based on local search is, given an initial point, search continuously in its

neighbourhood for better solutions. This can be seen as reducing the space of search to a smaller one and

find the point with minimum cost function in that subset (local optimum). The neighbourhood of a given

point consists of all solutions which differ from the given solution in k coordinates (also referred as the

k-coordinate away neighbourhood). For the sake of looking into different regions of space, the search

procedure can be repeated several times by performing escape strategies and choosing different initial

points. Attached to these random methods there must be stopping criteria (to limit complexity), that

when satisfied, the point yielding the highest likelihood in the explored space is returned as the solution.

Although it is hard to analytically evaluate the performance of these algorithms, they are found to

converge quickly with an output that is close to the optimal solution and, hence, they continue to be

studied and compared by many researchers [28]. In the next paragraphs, some of the local search based

algorithms used for detection in large MIMO systems will be presented. Henceforth in this chapter, an

equivalent real-valued MIMO system will be considered4.

4A complex-valued model can be transformed in a completely equivalent real-valued one (as will be seen in chapter 5).
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3.7.1 Likelihood Ascent Search

In the K-stage likelihood ascent search algorithm (K-LAS) [72], the initial point is preferably given

by the output solution of a low complexity detector, such as MMSE. The search consists of several

substages. During the first substage, which may have more than one iteration, the algorithm updates

one symbol per iteration (1-coordinate away neighbourhood) such that the cost function at each iteration

decreases monotonically. It stops when a local optimum is reached, moving then to the second substage.

At this point a two symbol update iteration is applied (2-coordinate away neighbourhood). If it succeeds

in increasing the likelihood, the algorithm returns to the one symbol update stage. Otherwise, it moves

on to a three symbol update and so on until a K-coordinate away neighbourhood fails to increase the

likelihood. In order to limit complexity, symbol updates at a substage higher than the first one may only

have one iteration. The cost function after the kth iteration at a given search stage is given by [28]:

C(k) = x(k)THTHx(k) − 2yTHx(k), (3.16)

where x(k) is the candidate vector at the kth iteration. The overall average per symbol complexity

is O(N2
T ) which is acceptable for larger dimensions. The main disadvantage of the conventional LAS

algorithm is that to achieve optimal BER performance, a very large number of receive antennas is needed,

especially for larger constellations. In order to overcome this situation, alternative LAS approaches using

multiple initial vectors and multiple search candidate sets have been proposed in [73].

3.7.2 Randomised Search

In the randomised search (RS) algorithm as in [74], the set of nodes to be tested in a local neighbourhood

is selected randomly, hence the name. In order to improve search efficiency, the method keeps track of

already visited nodes. Given an initial point, the first step in the algorithm is to find its neighbourhood,

represented by all feasible vectors which are one symbol away from x(k) and that have not been visited

yet. Then, a randomly chosen position, denoted by m, is picked and all possible vectors differing from

x(t) in that index m, denoted by d(j), are computed as:

d(j) = x(t) + λmem, j = 1, ..., |A| − 1, (3.17)

where em is a vector of zeros except for the mth entry which is 1 and λm is a constant such that

d(j) ∈ A, for all j. Consequently, the cost function β(j) is computed as [28]:

β(j) = 2λmzm − 2λme
T
mGx(t) − λ2mGm,m, (3.18)

with G = HTH, z = HTy and where zm denotes the mth element of z. Then, the candidate vector

with the highest likelihood βmax is either considered the new solution vector (if βmax > 0) or discarded

(if βmax < 0). The algorithm stops only when all m positions have been visited. Due to its low
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average complexity O(N1.4
T ) and in the pursuance of better solution vectors (explore other parts of the

space), the algorithm can be restarted multiple times and the final solution will be given by the vector

x yielding the lowest ML cost. Once again and similar to LAS, RS algorithms attains close to optimal

performance in large dimensions but only for small constellations [28]. Nevertheless, its performance

is highly dependent on the number of required restarts, which is also a function of the SNR, number of

antennas and constellation size.

3.8 Concluding Remarks

In this chapter, two distinct families of receivers, suitable for large MIMO systems, have been outlined.

They are the LRA methods and the techniques based on local search. On the one hand, LR methods

combine the traditional LD and SIC techniques in order to retrieve maximum diversity. On the other

hand, randomised algorithms return the best solution after performing an ”ingenious” exploration of

space regions where the optimal solution is very likely to be. Descriptions of both theory and implemen-

tation aspects of the corresponding state-of-the-art algorithms will be detailed in chapter 5, and where an

improved variant is also proposed.
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Chapter 4

On the Massive MIMO Effect

In this chapter, the main benefits of increasing the number of dimensions will be outlined and exploited

to construct algorithms that, without compromising the performance, yield lower complexity than con-

ventional methods.

4.1 Introduction

In chapter 2, when the advantages of increasing the number of antennas in terms of capacity were dis-

cussed, a point-to-point system was considered. However, in this work one is mainly interested in the

case where different NT users are served simultaneously, since in that scenario the chances of uncorre-

lated fading are much higher. This leads to a channel matrix H with higher rank, which is much more

desirable. In this chapter, the multiuser case will then be considered, and the consequences of increasing

the number of receiving antennas without bounds will be discussed.

Whilst assuming NT << NR, it will be indeed verified that linear processing techniques perform

close to optimal and, capitalising on that fact, algorithms for both fast computation and updates of inverse

matrices will be evaluated.

4.2 Channel Hardening

In a communication system with a given channel and available bandwidth, one is interested in maximis-

ing the amount of transmitted information, measured in bits per channel use, and which is denoted as

mutual information. Using the MIMO model in (2.1), the SNR definition in (3.2), and considering the

input x to be Gaussian distributed [75], instantaneous capacity can be expressed as

C = log2 det

(
I +

SNR
NT

HHH

)
. (4.1)
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However, because H is a random matrix, one is interested in the average behaviour of (4.1), that is

Ce = E{C}, denoted as ergodic capacity, and which can be formulated as [76]:

Ce = NRE{log2(1 + SNRλ)}, (4.2)

where the operator E{·} is over the eigenvalues of the normalised Wishart matrix HHH/NT [77], de-

noted here by λ.

One of the solutions to increase throughputs, as was reviewed in previous chapters, is to use multiple

antenna communications. The gain in capacity, from a theoretical point of view, when the number of

antennas is increased without bounds will be briefly evaluated in this section. Particularly, two situations

will be considered: NR >> NT and NT ≈ NR.

For the first case, using the law of large numbers, analysis is straightforward. Note that the en-

tries of H are Gaussian i.i.d. random variables, hence when H is tall (NR >> NT ), the product

HHH/NT = HHH/NR · (NR/NT ) tends to a scaled identity matrix, that is (NR/NT )I. Therefore,

when NR →∞ the eigenvalues in (4.2) tend deterministically to (NR/NT ), resulting in:

CNR>>NT
e ∼ NR log2

(
1 + SNR

NR

NT

)
, (4.3)

which clearly shows the advantages of increasing the number of receive antennas NR.

On the other hand, when both number of served users (NT ) and number of BS antennas (NR) are

large, with ratio β = NT /NR, the eigenvalues in (4.2) do not converge deterministically any more,

but rather statistically. Further, their distribution is known and given by the Marchenko-Pastur law, as

provided in the following theorem [78].

Theorem 1. Consider a matrix H ∈ CNR×NT with i.i.d. entries satisfying CN (0, 1). Then, when

NR, NT →∞ with NT /NR → β, then the distribution p(λ) of the eigenvalues λ(HHH/NR)) satisfies

p(x) = (1− β−1)+δ(x) +
1

2πβx

√
(x− a)+(x− b)+, (4.4)

where a = (1−
√
β)2, b = (1 +

√
β)2, (z)+ = max(0, z) and δ(x) represents the Dirac delta function.

A graphical representation of the eigenvalue distribution in (4.4) is depicted in figure 4.1 for different

values of β (the mass function at x = 0 was disregarded). What can be inferred is that when the ratio β

decreases, a convergence in the distribution is verified, meaning that the eigenvalue of a given channel

realisation becomes more and more deterministic as the number of antennas increases.

This diagonalisation effect verified in HHH is called in the literature channel orthogonalisation or

channel hardening, and will be exploited in the subsequent sections to construct low complexity near

optimal detectors and precoders.
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Figure 4.1: Probability density function (pdf) of the eigenvalues of HHH/NR for different ratios β.

4.3 On the Optimality of Linear Processing

The diagonalisation of the channel, verified in the previous section when 1 << NT << NR, can be

effectively exploited to apply linear processing techniques (for either detection or precoding purposes).

Specifically, these low complexity yielding filters attain near optimal performance (diversity is NR −

NT + 1 ≈ NR), hence their interest in massive MIMO systems. In this work, only the detection case

will be considered, though its extension to precoding is straightforward.

Denote the general, linear detector matrix by A ∈ CNR×NT . Then, by multiplying the received

signal by its conjugate transpose AH , followed by the application of the quantiser operator Q(·), one

can estimate the transmitted symbols as:

x̂ = Q(AHy), (4.5)

where x̂ are the hard decisions of x. The three conventional detectors MF, ZF and MMSE, introduced in

chapter 3 will be considered, i.e.,

A =


H, for MF;

H(HHH)−1, for ZF;

H(HHH +NTSNR−1I)−1, for MMSE.

(4.6)
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Applying any of these filters to the received vector in (2.1) leads to

r = AHy = AHHx + AHn, (4.7)

where r ∈ CNT×1 denotes the vector containing the symbols before quantisation. Its kth element can be

decomposed as follows

rk = aHk hkxk︸ ︷︷ ︸
useful signal

+

NT∑
i 6=k

aHk hixi︸ ︷︷ ︸
interference

+ aHk n︸︷︷︸
enhanced noise

. (4.8)

Now using the MF in (4.6), taking into account the statistical distributions of hk ∼ CN (0, 1) and n ∼

CN (0, σ2n), and using the law of large numbers (as NR →∞) [32]:

1

NR
hHk hi

a.s.−−→ 0 (interference vanishes); (4.9)

1

NR
hkn

a.s.−−→ 0 (noise vanishes), (4.10)

for k 6= i, k = 1, ..., NT and where a.s.−−→ denotes the almost sure convergence. Therefore, from (4.8), the

signal of interest satisfies
1

NR
hHk r

a.s.−−→ E{h?kkhkk}xk = xk, (4.11)

which is the same as stating that the simplest form of detection (MF) performs optimally for any SNR, as

long as NR → ∞. Obviously, this last condition is rather unrealistic, nevertheless (4.11) gives a useful

insight into the benefits of scaling up the number of antennas at the receiving end.

Unlike the MF, the ZF detector considers other users’ channels and forces inter-user interference to

zero. This mitigation, however, comes at the cost of noise enhancement, which in the low SNR regime

might lead to a drastic reduction in performance. Further, computing the ZF filter requires an inverse,

which may yield a non-negligible complexity, when a large number of users are being served (a more

rigorous study on this will be conducted in subsequent sections). Thus, when inter-user interference is

considerable (large NT ), better performance for the MF is to be expected for the low SNR, whilst requir-

ing a lower number of arithmetic operations. On the other hand, the MMSE filter takes into consideration

both inter-user interference and noise variance in order to perform detection. Assuming that such infor-

mation is available at the receiver (knowledge of both SNR and CSI), then, from the three considered

detectors, MMSE is expected to perform best.

For a numerical demonstration of these facts, a simulation with a realistic number of receiving anten-

nas, NR = 128, is performed [41]. Using the detectors in (4.6) and for an increasing number of transmit

antennas (NT = 8, 64, 128), BER performance is depicted in figure 4.2. First thing to be noticed, is

the high diversity attained by both ZF and MMSE filters when NT = 8 << NR, corroborating the

statement previously made. Further and as expected, the MF filter outperformed the ZF in the low SNR

for the symmetric case (NR = NT ), thereby in this regime the best strategy is to treat interference also
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as noise. Nevertheless, linear detection performance in this last, symmetric case is subpar, hence the

need for large MIMO suitable detectors (as will be studied in chapter 5). Still, the MMSE filter, yielding

about the same complexity as ZF, obtained the best performance of the three (for this reason, when linear

detection-dependent methods are applied, such as lattice reduction, MMSE filters should be chosen to

guarantee maximum effectiveness).
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Figure 4.2: BER performance of traditional linear detectors when NR = 128 and for different values of
NT .

4.4 Efficient Inversion Techniques

As was verified in previous sections, when the number of receive antennas NR is much larger than the

number of served users NT in the uplink, channel hardening effects become preponderant. This is more

noticeable especially when the ratio β is low. Mathematically, this can be seen as a diagonalisation of the

entries in the Gram matrix Z = HHH, where the off-diagonal entries tend to zero, whereas the diagonal

terms become closer and closer to NR.

Under the assumption that NR >> NT , linear detection and precoding methods were confirmed to

perform close to optimal. Even though these techniques yield low complexity, they often require the

inversion of matrix Z ∈ CNT×NT , an operation that is not very hardware-friendly when conventional

methods are utilised. For convenience purposes, the ZF and MMSE detection matrices are replicated in
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this section and denoted by Azf and Ammse. The corresponding expressions are as follows:

Azf = (HHH)−1HH = Z−1zf H
H ; (4.12)

Ammse = (HHH +NTSNR−1I)−1HH = Z−1mmseH
H . (4.13)

Both Zzf and Zmmse are, for large γ = NR/NT , an ”almost diagonal” matrix D. For simplification

purposes and without loss of generality, the ZF Gram matrix Z = Zzf will be considered in the analysis

henceforth.

The computation of Z−1 is performed in the central processing unit. For largeNT , a high throughput

matrix inversion can become expensive both in terms of area and power [79]. Therefore, exploiting the

fact that Z ≈ D, one may look for low complexity suboptimal approaches to find good approximations

of Z−1. A first brute-force approach would be to approximate Z−1 by D−1, which would lead to a

considerable decrease in complexity. But is this in fact a good estimate of Z−1? Unfortunately, and

as will be confirmed in the following section, this is a crude approximation, severely deteriorating the

performance of the system [80]. Hence, the objective is to find a hardware-realisable method that finds

Z−1 with low complexity and without compromising the performance of the system. From the previous

sentence, two pertinent questions arise:

1. What is the complexity of conventional stable inversion methods?

2. How acceptable must the performance of the proposed method be?

In order to answer the last question, the immediate reply is that it depends on the considered application

and namely on the error correcting capabilities of the channel coding scheme being employed. For

instance, LTE has a maximum 10% block error rate requirement [81]. An answer to question 1 will be

given in section 4.4.3.

In this work, the study will be focused on the trade-off between performance and complexity. As a

starting point Neumann series expansion will be considered, followed by a brief detail of the complexity

of an exact inverse method based on the Cholesky decomposition.

4.4.1 Neumann Series Expansion

Eigenvalue Analysis

Using the fact that the eigenvalues of Z follow a deterministic Marchenko-Pastur distribution (as seen in

theorem 1) and the analysis conducted in [80], one may infer that the largest and smallest eigenvalues of

the scaled matrix 1
NT+NR

Z = θZ converge to

λmax(θZ)→ 1 +
2
√
γ

1 +
√
γ

;

λmin(θZ)→ 1−
2
√
γ

1 +
√
γ
, (4.14)
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respectively, and when both NT and NR grow without bounds. Therefore, from (4.14), the eigenvalues

of (I−θZ) are approximately bounded by [−2
√
γ/(1+γ), 2

√
γ/(1+γ)] and when γ is large, 2

√
γ/(1+

γ)→ 0. Thus, for increasing values of γ, the following condition is satisfied:

lim
n→∞

(I− θZ)n ≈ 0. (4.15)

From [82], it is known that if Z satisfies (4.15), then its inverse can be expressed by a Neumann series as

Z−1 ≈
K−1∑
n=0

(I− δθZ)nθ, (4.16)

with equality when the number of terms in the seriesK tends to infinity and where δ < 1 is an attenuation

factor such that the limits in (4.14) hold true. Equation (4.16) can be regarded as the summation of

powers of a matrix, providing an iterative method to approximate Z−1 without directly computing any

inverse. However, for a feasible and efficient implementation of (4.16), the number of considered terms

(iterations) K should be finite and small. Noting that a matrix-by-matrix multiplication is order O(N3
T ),

then the complexity in (4.16) is O((K − 2)N3
T ), for K ≥ 3. Even though the complexity order of an

exact inverse is also O(N3
T ), from a hardware implementation perspective, matrix multiplications are

preferable, making Neumann series worthwhile when advanced architectures are not at one’s disposal. A

comparison of the complexity for different K and an exact inverse method will be conducted in section

4.4.3.

4.4.2 Convergence of the Neumann Series

For realistic values of γ (finite NT and NR) the bounds in (4.14) may not be valid. If any of the moduli

of the eigenvalues of (I − δθZ), denoted by |λ(I − δθZ)|, is greater than 1, then convergence is not

guaranteed [83]. To circumvent this problem and as was done in [80], a small modification shall now be

introduced. Denote the scalar multiplication in (4.16) with a diagonal matrix D, such that

D−1 =
δ

NR +NT
I. (4.17)

Substituting in (4.16), the approximate inverse can be written as

Z−1 ≈
K−1∑
n=0

(I−D−1Z)nD−1. (4.18)

For a fixedK, the convergence speed of (4.18) depends on the magnitude of ρ = λ(I−D−1Z). Provided

|ρmax ≤ 1|, then the smaller the magnitude of |ρ|, the faster the convergence. Thus, the optimal choice

for δ, such that λ(I−D−1Z) is as small as possible, is a non-trivial task. On the one hand, if δ is chosen

too small, the convergence speed deteriorates and a large K would be required, increasing complexity.
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On the other hand, if δ is too large, convergence may not be guaranteed. In order to solve this and as was

proposed in [80], one may make use of Gershgorins circle theorem [84] and assume that Z is a diagonally

dominant matrix [85] satisfying

|zii| >
∑
j,i6=j
|zij |, i, j = 1, ..., NT . (4.19)

Under this assumption, choosing the terms D−1 = diag(1/z11, ..., 1/zNTNT
) guarantees that

maxi |ρi| < 1, hence assuring the convergence of the Neumman series [80].

Using the latter result, the Gram matrix Z can be decomposed into its diagonal D and its hollow E

in the following way:

Z = D + E. (4.20)

Thus, (4.18) can be rewritten as

Z̃−1K =

K−1∑
n=0

(−D−1E)nD−1, (4.21)

where Z̃−1K is the K-term approximation of Z−1. For K = 1, Z̃−11 = D−1 corresponds to a scaled

version of the MF detector. For K = 2, the approximation Z̃−12 = D−1 −D−1ED−1 requires O(N2
T )

operations, which is still lower than the exact inverse O(N3
T ). For K = 3, the approximate inverse is

given by:

Z̃−13 = D−1 − (D−1E)D−1 + (D−1E)(D−1ED−1). (4.22)

Even though the complexity to compute (4.22) scales with O(N3
T ), only one matrix-by-matrix multi-

plication is required, resulting in a lower number of operations than the one of exact inverse methods.

Finally, for K ≥ 4, the expected complexity is higher than that of an exact inverse. Nonetheless, and as

was stated before, a hardware implementation of an iterative method is much more preferable than when

compared with exact inverse methods.

4.4.3 Complexity Analysis

In order to be able to effectively measure the trade-off between performance and complexity, an estimate

of the needed number of operations is essential. As a standard for comparison, the exact inverse method

based on Cholesky factorisation will be briefly detailed (note that other methods could have been chosen,

such as QR and LU decompositions or Gauss-Jordan method).

The computational complexity is characterised by the sum of real-valued addition, multiplication and

division operations. Compiler related complexity reduction techniques, such as strength reduction [86],

will not be considered.
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Cholesky Decomposition Exact Inversion

Exploiting the fact that Z is a positive definite symmetric matrix, Cholesky decomposition is applicable

and factorises it into a lower triangular matrix L and its Hermitian transpose LH as Z = LLH . A

detailed description of the algorithm to compute L can be found in [84, 87] and its complexity, given in

total number of FLOPS1 N chol
f , is:

N chol
f =

(N3
T −NT )

3
fadd +

(N2
T −NT )

2
fdiv +NT fsqrt, (4.23)

where fadd, fdiv and fsqrt denote the number of necessary FLOPS to apply the addition (or multiplica-

tion), division and square root operators, respectively.

After L is obtained, computing Z−1 becomes less computational demanding. For that purpose, define

X = Z−1 and M = L−1, such that [88, 89] Lmi = ei,

LHxi = mi,
(4.24)

where ei is the ith column of I. Hence, finding the inverse Z−1 from L requires solving two triangular

left division systems, whose total number of FLOPS is given by [90]:

N syst
f = 2NT (N2

T fadd +NT (fdiv − 1)). (4.25)

Finally, the total the number of FLOPS to compute the inverse via Cholesky decomposition is given by:

N total
f = N chol

f +N syst
f , (4.26)

corresponding to one Cholesky decomposition, followed by solving two triangular left divisions.

A graphical representation of the total number of FLOPS as a function of NT for the computation

of K terms of the Neumann series and the exact inverse via Cholesky decomposition is given in figure

4.3. The used parameters for the number of necessary FLOPS were fadd = 1, fdiv = 8, fsqrt = 8 [90].

For the Neumann series, both preprocessing matrices computation (D−1 and D−1E) and matrix power

operations in the series were added to the total number of FLOPS. It can be observed that when K ≤ 2,

the complexity is rather low even for a large number of users. This is justified with the fact that all

multiplications involve diagonal matrices, leading to a rather low number of operations. From (4.22), for

K = 3, one matrix-by-matrix multiplication is required, hence the depicted increased complexity was

to be expected. Nonetheless, its complexity is still below the one when Cholesky factorisation is applied

to compute the exact inverse; hence, the advantages for K ≤ 3 are two-fold: not only are they easier to

implement in hardware but also fewer computations are required. Lastly and even though the complexity

1Floating-point operations per second.
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order for K ≥ 4 is still O(N3
T ), the high number of required matrix-by-matrix multiplications leads to a

larger number of FLOPS than when compared with the exact inverse via Cholesky decomposition. Nev-

ertheless and depending on the impact in the performance (studied next), Neumann series is an iterative

method, thus the case when K ≥ 4 might still have a practical interest for hardware implementation.
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Figure 4.3: Number of required FLOPS to compute inverse of a matrix using the Cholesky decomposition
and the Neumann series employing K terms.

4.4.4 Performance Impact of the Neumann Series

The reduction in complexity for K ≤ 3 provided by the Neumann series comes at the cost of an ap-

proximation error. In this section, both the magnitude of the error and its impact in performance will

be evaluated. Firstly, denote the approximation error for the inverse Z−1 as ∆K = Z−1 − Z̃−1K [89].

Expanding it leads to:

∆K =

∞∑
k=K

(−D−1E)kD−1 (4.27)

= (−D−1E)K
∞∑
k=0

(−D−1E)kD−1 (4.28)

= (−D−1E)KZ−1. (4.29)

The purpose of the approximation is to equalise the received signal y. Making use of either ZF or MMSE

reviewed in (4.12) and (4.13), the symbols after equalisation with the approximation are given by [89]

r̂K = Z̃−1K HHy = Z−1HHy −∆KH
Hy. (4.30)
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The l2-norm of the residual approximation error ∆KHHy can be bounded by

||∆KHHy||2 = ||(−D−1E)KZ−1HHy||2, (4.31)

≤ ||(−D−1E)K ||F ||Z−1HHy||2 (4.32)

≤ || −D−1E||KF ||Z−1HHy||2 (4.33)

From the latter result, it is verified that if the condition ||D−1E|| < 1 is satisfied, then convergence

is guaranteed and the error approaches zero exponentially fast as K → ∞. Is this condition satisfied

for large-scale MIMO systems? The authors in [89] partially answered this question with the following

theorem.

Theorem 2. Let NR > 4 and assume the entries of H ∈ CNR×NT are drawn from a CN (0, 1) distribu-

tion. Then,

P (||D−1E||KF < α) ≥ 1−
(N2

T −NT )

α
2
K

√
2NR(NR + 1)

(NR − 1)(NR − 2)(NR − 3)(NR − 4)
. (4.34)

Theorem 2 provides good insight into the probability of convergence of the Neumann series. For

K = 1 and α = 1, it can be inferred that an increase in the ratio NR
NT

leads to a higher probability of

convergence. In addition, when α ≤ 1 an increase inK also increases the probability that the error in the

K-term approximation is smaller than α. Ultimately, when NR → ∞ with NT constant and α ∈ (0, 1],

the limit P (||D−1E||KF < α)→ 1 holds, a similar result to the one verified during the MF analysis.

4.4.5 Numerical Results

The performance of the Neumann series in massive MIMO systems will be here evaluated in terms of

BER curves and using the MMSE filter. Firstly, define the quality of the channel as SNR = NT
σ2
x
σ2
n

and

the constellation size to be 16-QAM. Secondly, fix the number of receive antennas NR = 128 and vary

the number of transmit antennas NT = 8, 16, 32.

Numerical simulations results are depicted in figure 4.4 and, on the whole, it can be stated that

Neumann series provides an efficient way to invert Z, especially when K ≥ 3 and when γ is large. In

particular, when NT = 8 and K ≥ 3, Neumann series and exact inversion attain the same performance,

whilst for K = 1, BER is stalled at around 5 × 10−2. This error floor is explained with the inaccuracy

resulting from the approximation, and a similar effect is noticed when γ decreases (NT = 16, 32). The

depicted results were to be anticipated, since a higherK means a better approximation, leading to a better

performance. It is worth mentioning, however, that when the number of antennas was set to NT = 32,

K = 3 attained lower BER than K = 4, a result that is counter-intuitive. This can be explained with

the eigenvalues analysis conducted before; when NT = 32 the condition |λmax(I −D−1Z) ≤ 1| is not

necessarily satisfied (this fact will be verified next), thus adding an extra term in the series is prejudicial

to the approximation. As previously stated, the performance degradation verified in figure 4.4 is closely
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Figure 4.4: BER performance comparison between exact inverse and Neumann series with different
number of terms K. Number of receive antennas was fixed to NR = 128 and used constellation size was
16-QAM.

related to the modulus of the eigenvalues of (I −D−1Z). In order to accelerate the convergence of the

series without drastically increasing complexity, one may consider off-diagonal elements for the initial

matrix D [79]. For that purpose, define the new initial matrix as Do, which can be expressed as:

Do = diag0(Z) +

Noff∑
i=1

Dl, (4.35)

where Noff is the number of off-diagonals to be considered and Dl ∈ CNT×NT is defined as

[Dl]i,j =

zi,j , |i− j| = l

0, otherwise.
(4.36)

Considering one off-diagonal (Noff = 1, tridiagonal matrix) andK = 3, the improvement in cumulative

distribution function (CDF) of |λmax(I − D−1o Z)| can be verified in figure 4.5. As can be inferred,

there is a non negligible gain when diagonal or tridiagonal matrices are being used. Moreover, when

NT = 32, the maximum eigenvalue surpasses 1 in more than half of the instances, hence justifying the

counter-intuitive result in figure 4.4. The better eigenvalue distribution provided by the tridiagonal matrix

leads necessarily to improved BER results, since a faster convergence in the series leads to lower error

values in the approximation. This fact can be confirmed in figure 4.6, where the 3-term approximation

performance using both Neumann series and tridiagonal matrix techniques is depicted.
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4.5 Updating the Inverse of a Matrix

Until now, a method based on the Neumann series to efficiently invert matrices has been studied. Ob-

viously, the performance of such method is highly conditioned on the ratio γ and the number of terms

K. For instance, when the ratio γ decreases, performance degrades. It has been proven, however, that

the inclusion of off-diagonal elements in D can help mitigating this deterioration, at the cost of slightly

increased complexity.

Capitalising on the results obtained thus far, methods to efficiently update the inverse of a matrix

after a small perturbation are proposed here for the first time in the context of massive MIMO. The

reason behind this study is simple: when a user is added or removed from the system, one is interested

in recomputing the new inverse Z−1 in the least time possible in order to maximise data throughput and

minimise power consumption. Having this in mind, it is possible, using the matrix inversion lemma,

to decrease the number of computations from O(N3
T ) to O(N2

T ), hence increasing speed. Moreover,

in future wireless networks, it might make sense to update Z−1 when a new channel estimation from a

single user is obtained (which corresponds to changing one column in H and altering a column and a

row in Z). Without recomputing the entire inverse, this can be achieved using the Sherman-Morrison

formula (a special case of the matrix inversion lemma).

The algorithms and corresponding impact in the performance when a user is added, removed or

updated are described in the following sections. Results here provided are done for MIMO detection but

they can easily be adapted for linear precoding schemes. Moreover, the provided methods can be applied

using either an initial approximation Z̃−1K or the exact inverse Z−1 (which coincides with Z̃−1∞ ).
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Figure 4.6: BER performance comparison between exact inverse and Neumann series with different
initial ”diagonal” matrices. Number of receive antennas was fixed to NR = 128 and used constellation
size was 16-QAM.

4.5.1 Adding and Removing a User

Assume that at a given time instant, the inverse Z−1 = (HHH)−1 is already computed (via exact

inversion or Neumann series) and that a user is added to the system with estimated channel denoted by

the column vector hn. Define the new extended matrix as He = [H hn] (the user is added in the last

column but in fact it could have been added in any position). Hence, the new Gram matrix denoted by

Ze is given by:

Ze =

HH

hHn

[H hn

]
=

HHH HHhn

hHn H hHn hn

 (4.37)

In order to find Z−1e , one may use the general result provided by the inverse of a partitioned matrix [91],

which is written as follows (see [92, Appendix B]):

P11 P12

P21 P22

−1 =

 F−111 −F−111 P12P
−1
22

−P−122 P21F
−1
11 F−122

 , (4.38)

where

F11 = P11 −P12P
−1
22 P21; (4.39)

F22 = P22 −P21P
−1
11 P12. (4.40)
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Using the result provided above, it is possible to rewrite Z−1e as

Z−1e =

HHH HHhn

hHn H hHn hn

−1 =

 F−111 −dZ−1HHhn

−dhHn HZ−H d

 , (4.41)

where

d =
1

hHn hn − hnHZ−1HHhn
; (4.42)

F−111 = Z−1 + dZ−1HHhnh
H
n HZ−H . (4.43)

Therefore, it is possible to update the inverse of a matrix Z = HHH when a column is added to H at

position p without explicitly recomputing Z−1e or Z̃−1e,K . The method is summarised in algorithm 1 and,

for comparison purposes, the corresponding number of required real-valued multiplications and divisions

is shown on the right hand side (computation of both HHhp and hHp hp were not considered since they

are also required in the recomputation of D and E in the Neumann series). If the initial Z−1 is the exact

inverse, then Z−1e is also exact. On the other hand, if an approximation Z̃−1K is used, then a propagation of

errors is to be expected. Intuitively, the greater the error ∆K , the greater the degradation in performance

after the update.

Algorithm 1 Update Z−1, when a user hp is added to H at position p

Input: Z−1,H,hp
t1 ← HHhp

t2 ← Z−1t1 . 4M2

d← 1/(hHp hp − tH1 t2) . 4M + 1

t3 ← dt2 . 2M

F−111 ← Z−1 + dt2t
H
2 . 3M2 + 3M

Z−1e ←

[
F−111 −t3
−tH3 d

]
Change last column and last row of Z−1e to column p and row p

Output: Z−1e

Denote the number of updates by U , corresponding to the number of new added users after the last

full inverse (Z−1 or Z̃−1K ) was computed. The extended inverse matrix after U sequential updates is

designated by Z−1e,U ∈ C(NT+U)×(NT+U). For instance, U = 2 means that algorithm 1 was run twice and

its input matrices were Z̃−1K and Z−1e,1 for the first and second repetitions, respectively.

The result using the ZF approximation Z̃−13 as the initial vector and performing 3 successive updates

is exposed in figure 4.7. Initial number of antennas was defined as NT = 8 and NR = 80 and constel-

lation size set to 64-QAM. For comparison purposes, performance using exact inverse (with dimensions

NT + U ) and Neumann series approximation for both NT and NT + U cases are also exhibited. The

result shows that the degradation in performance when a user is added via matrix inversion lemma is neg-
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Figure 4.7: BER performance comparison between exact inverse, Neumann series approximations and
update via matrix inversion lemma when U users are added. Number of receive antennas was fixed to
NR = 80 and used constellation size was 64-QAM.

ligible, even outperforming the case where the entire recalculation of Z̃−1e,K is done using the Neumann

series. Further, the number of required operations to perform the update using algorithm 1 is lower than

calculating the inverse via Neumann series (K ≥ 3). Therefore, this result might be of interest when

users need to be added on-the-fly and in cases where high matrix inversion-throughputs are required.

Based on the previous results, a similar approach can be conducted when a column from H is re-

moved. Decompose the original matrix as H = [Hr hn], where Hr is the reduced matrix from which

we want to compute the inverse Z−1r = (HH
r Hr)

−1 and hn the column corresponding to user n and that

is to be removed. The initial, already computed, inverse matrix Z−1 is given by

Z−1 =

HH
r Hr HH

r hn

hHn Hr hHn hn

−1 =

 F−111 −du

−duH d

 , (4.44)

where u = Z−1r HH
r hn. Noting that F−111 = Z−1r + duuH (from (4.43)), it is straightforward that

Z−1r = F−111 − duu
H . (4.45)

The step-by-step set of operations to compute (4.45) is outlined in algorithm 2. It is worth mentioning

that the number of required computations is inferior to the one in algorithm 1. Numerical results using

an analogous setup to the previous case are shown in figure 4.8. This time, BER performance using the

Neumann series approximation is better if a recalculation from scratch is performed (for NT − U ). This

is related with the smaller error propagation associated with lower-dimensional matrices. Nonetheless,
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Figure 4.8: BER performance comparison between exact inverse, Neumann series approximations and
update via matrix inversion lemma when U users are removed. Number of receive antennas was fixed to
NR = 80 and used constellation size was 64-QAM.

the gain in complexity provided by algorithm 2 might be exploited in systems where BER requirements

are not too strict. In addition, this degradation could have been mitigated if a better initial approximation

(K > 3) of Z−1 had been used.

Algorithm 2 Update Z−1, when a user hp is removed from H at position p

Input: Z−1, p
Change column p and row p of Z−1 to last column and last row
F−111 ← Z−1(1 : (NT − 1), 1 : (NT − 1))

d← Z−1(NT , NT )

t← −Z−1(1 : (NT − 1), NT )

Z−1r ← F−111 − ttH/d . 3M2 + 3M

Output: Z−1r

4.5.2 Updating an Inverse when a Column is Changed

Formerly, the situations whereU users are added or removed from the system were considered. Likewise,

an update to the inverse when a new channel estimation for user p is obtained can be studied. This

operation corresponds to replacing column p of H with the new estimation hp. After H is updated

with the new estimation hp, expressed as Hu the new product Zu = HH
u Hu corresponds to altering

column p and row p in the original Z. This rank-2 perturbation can, however, be decomposed into two

rank-1 perturbations. Defining a rank-1 perturbation by abH , one can use Sherman-Morrison formula to
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recompute the inverse after the update, as follows [93]:

(Z + abH)−1 = Z−1 − (Z−1a)(bHZ−1)

(1 + bHZ−1a)
. (4.46)

Taking into account (4.46) and without recomputing the inverse, calculating Zu from the previous Z is

feasible. For that purpose, define zu,p = HH
u hp and compute a1 = zu,p−zp, where zp is the pth column

of Z. Further, make b2 = a
(0,p)
1 , where a

(0,p)
1 is the same as a1 but with the pth entry zeroed. Then,

computing Z−1u is straightforward:

Z−1t = (Z + a1e
T
p )−1 = Z−1 −

(Z−1a1)(e
T
p Z
−1)

(1 + eTp Z
−1a1)

; (4.47)

Z−1u = (Zt + epb
H
2 )−1 = Z−1t −

(Z−1t ep)(b
H
2 Z−1t )

(1 + bH2 Z−1t ep)
, (4.48)

where ep is the pth column of the identity matrix I. Equations (4.47) and (4.48) require 24M2 scalar

multiplications and 4 divisions; thus, when M is large, updating the inverse via this method might be

advantageous over exact inversion in terms of complexity. Note that updating the inverse when only one

column in H is changed can also be regarded as removing and adding a column sequentially (algorithms

2 and 1).

Figure 4.9 depicts the situation after U different columns in H are changed (the dimensions of the

inverse matrices after the update remain the same). As can be inferred, the sequential operations in

(4.47) and (4.48) using an approximation as initial inverse led to a propagation of errors, resulting in

increased BER values. However, it is interesting to note that performing a deflation followed by an

inflation (running algorithm 2 and 1 sequentially) gets better results than computing a 3-term Neumann

series from start. This is explained with the vanished error contribution from ”removed” columns in H,

since algorithms 1 and 2 return the exact inverse if the initial inverse matrix is also exact. Ultimately,

if U = M updates were to be performed, then exact inverse would be attained regardless of the initial

matrix (though, its cost would be similar to one of an exact inverse).

4.6 Concluding Remarks

In this chapter, the advantages of augmenting the number of antennas have been identified. In particular,

it has been shown that, when using massive MIMO systems, the spectral capacity can be drastically

increased. Moreover, under the assumption that NT << NR, linear processing techniques for detection

and precoding were shown to perform close to optimal. By exploiting the diagonalisation of the channel,

efficient inverse computation methods based on the Neumann series and matrix inversion lemma have

been evaluated. It is worth emphasising, however, that perfect knowledge of the channel at the receiver

was always assumed. Hence, the study of suitable channel estimation algorithms and consequent impact

in performances is left for future work.
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Figure 4.9: BER performance comparison between exact inverse, Neumann series approximation, in-
verse update via Sherman-Morrison formula and a sequential run of algorithms 2 and 1 when U users’
channels are updated. Number of receive antennas was fixed toNR = 80 and used constellation size was
64-QAM.
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Chapter 5

Symmetric Large MIMO Detection

In this chapter a lattice reduction algorithm and several variants of the Gibbs sampling technique to

perform detection will be detailed, optimised and compared. A study of the underlying complexities is

also conducted.

5.1 Introduction

Large multiuser MIMO wireless systems, where the base station (BS) has tens to hundred of antennas

and the users have one or more antennas has gained much attention over the past few years. This is in

part due to the increasing demand from mobile operators clients for better quality of service and seamless

experience. Even though most of the data traffic comes from the downlink, uplink speeds and reliability

must not be neglected in the design of future wireless networks.

In the reverse link, the simultaneously transmitted signals from the users to the BS are separated by

their spatial signatures, also denoted in the literature as the channel or return channel. Once received,

these signals must be processed such that information can be retrieved.

It has been demonstrated in chapter 4 that when the number of served users NT is much smaller

than the number of antennas at the BS, denoted by NR, linear processing techniques attain very good

performance, while yielding low complexity. However, when NT → NR this is not the case anymore.

Mathematically, this is explained by the achieved diversity of linear receivers, which is given by NR −

NT +1, forNR ≥ NT . In the limit, whenNR = NT , attained diversity is 1, which is far from optimal. In

order to guarantee maximum diversity, one would have to perform maximum likelihood (ML) detection,

whose complexity is exponential with the number of transmit antennas, thus making it impossible to

perform detection in real time for large MIMO. The objective of this chapter is to study and evaluate

near optimal, low complexity detectors that are suitable for the symmetric case when NR = NT >> 1.

In particular, a state-of-the-art lattice reduction procedure and an optimised Markov chain Monte Carlo

method will be described and compared.
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5.1.1 System Model

Consider a MIMO system on the uplink with NR receive antennas at the BS and N = NT = NR served

users (with one antenna each). In this work N ≤ 10 will be considered to be conventional MIMO,

10 < N ≤ 20 to be large MIMO and N > 20 to be massive MIMO.

All users transmit symbols from an M -QAM alphabet B, such that

B = A+ jA, (5.1)

whereA = {− log2M + 1, ...,−1, 1, log2M −1}. Let xk ∈ B denote the transmitted symbol from user

k and x = [x1, ..., xNT
]T the vector containing the NT symbols. The received signal y ∈ CNR×1 can be

expressed as1

y =

√
SNR
NT

Hx + n, (5.2)

where H ∈ CNR×NT is the channel gain matrix and n is the noise vector, both having i.i.d. Gaussian

entries CN (0, 1). The factor
√

SNR
NT

is the ratio of the total transmit energy per channel use divided by

the per-component noise variance. Namely, the SNR can be expressed as

SNR =
E{||y − n||2}
E{||n||2}

. (5.3)

Under the considered model, the vector that minimises the error probability (ML) is

x̂ = arg min
x∈BNT

||y −
√

SNR
NT

Hx|| = arg min
x∈BNT

f(x), (5.4)

where f(x) is the ML cost function. Equation (5.4) is an NP-hard integer least squares problem, whose

aim is to find the integer lattice point (belonging to the alphabet) closest to the received signal. When

the problem size is moderate, sphere decoder (SD) algorithms can be efficiently used to solve (5.4).

However, as the number of dimensions increases, SD average complexity becomes exponential, hence

other methods must be looked at [70].

In this work, only hard-decision outputs, where the inference about x is made solely based on y, will

be considered. Conversely, there is the possibility to generate soft-decision values which are preferred as

inputs to the channel decoder. Nevertheless, as coded transmissions are not contemplated in this work,

performance with soft-decisions will not be evaluated.

5.2 Lattice Reduction-Aided

A large MIMO suitable lattice reduction detector will now be presented, including an overview of its

design and subsequent numerical results. The algorithm that is studied here belongs to the element-based
1Note that this channel model is identical to the ones presented in previous chapters. However, for both convenience and

implementation purposes, this model is adapted in this chapter.
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lattice reduction (ELR) family and it is formulated to solve the ”shortest longest basis” (SLB) of the dual

space [68]. For this reason, this method is denominated as Dual-Element-Based Lattice Reduction-

Shortest Longest Basis (D-ELR-SLB) and its formulation will be reviewed in the next section. The

outcomes of this evaluation will then be used for comparison purposes. In particular, its performance

will be confronted with the ones of randomised algorithms [94], which are the main focus of this work.

For analysis purposes, the gain term
√

SNR
NT

will be dropped in the remaining parts of section 5.2.

5.2.1 D-ELR-SLB Algorithm

Element-based lattice reduction algorithms were first proposed in the context of single carrier frequency

division multiple access (SC-FDMA) in [69]. Afterward, D-ELR-SLB algorithms were adapted to

MIMO detection and because of their inherent low complexity, the extension to the large and massive

MIMO cases was direct and conducted in [68].

Most LR algorithms aim to maximise the orthogonality of the basis H. Reducing the basis H is

equivalent to finding H̃ = HT, with T being a complex unimodular matrix2. One of the most cited

LR algorithms in the literature is the LLL and its extension to the dual (D-LLL [95]) and complex

cases (CLLL [67]). However, the performance of LLL methods degrade when large MIMO systems are

considered and, as a consequence, the iterative SA is often used as the metric for these systems [68].

Despite the good performance attained by SAs in large MIMO, their high computational cost for each

basis update is far from ideal [96]; hence, the motivation for the design of efficient lattice reduction

algorithms that are suitable for large MIMO.

The purpose of the studied algorithm is different from the previous; the goal is to minimise the

diagonal elements Ci,i in the noise covariance matrix after equalisation, given by C = (HHH)−1 [97].

For a given transmitted symbol xk and its hard-decision x̂k, one is to reduce the asymptotic pairwise

error probability (PEP) after linear detection given by [54, Equation 12]:

P (xk 6= x̂k|H) = Q

(√
|ex|2
2Ci,i

)
, (5.5)

where ex = xk − x̂k and Q(·) is the tail probability of the standard normal distribution [56, Chapter 33].

When LR-aided linear equalisation is used instead, the resulting expression for the PEP is identical to

(5.5), except for the fact that the diagonal elements are now C̃i,i, with C̃ = (H̃HH̃)−1 = T−1C(T−1)H

[97]. Therefore, if the diagonal elements of C̃ are reduced, the lattice-based algorithm improves the PEP

performance, resulting in a lower BER value. Having this fact in mind, one can formulate an optimisation

problem to find a unimodular matrix T that minimises the maximum diagonal element of C̃ and which

2In a complex unimodular matrix T, all entries of T and T−1 are Gaussian integers, and the determinant of T is either ±1
or ±j.
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can be expressed as follows [68]:

minimise
T

max
i

(C̃i,i),

subject to C̃ = (H̃HH̃)−1 = T−1C(T−1)H ;

T ∈ GLNT
(Z[j]),

(5.6)

where GLNT
(Z[j]) is the group of all NT ×NT unimodular matrices. Bear in mind that as the problem

is formulated, only the longest basis vector in the dual basis is minimised and its optimal solution may

not be unique. Consequently, the performance can be further improved by minimising the second largest

diagonal, the third one, and so on. The procedure stops when all diagonal elements have been minimised.

However, this process to find the global optimum solution is computationally demanding and, thus, not

feasible for large MIMO systems. Instead, an iterative method to solve the problem was developed and

proposed in [68] and will be briefly summarised below.

The objective of the ELR algorithm is to find a local optimal solution to (5.6). For that purpose, the

fact that T′ = (T−1)H is also a unimodular matrix is exploited and as a result it can also be expressed

as the product of a series of column-addition operation matrices [69]. At each iteration, the algorithm

tries to reduce the diagonal elements of C̃ and the amount of reduction in C̃k,k is given by (for proof, see

[68]):

∆i,k = −|λi,k|2C̃i,i − λ?i,kC̃i,k − λi,kC̃k,i ≥ 0, (5.7)

with λi,k computed as:

λi,k = −
⌈
C̃i,k

C̃i,i

⌋
, (5.8)

where k is the largest reducible diagonal element of C̃, the index i is chosen as arg maxNT

ĩ=1,̃i 6=k ∆ĩ,k and

the operator d·c represents the rounding function which rounds the real and imaginary parts to the closest

integer values. Moreover, a diagonal element C̃k,k is reducible if and only if there exists i 6= k, such that

λi,k 6= 0 (∆i,k ≥ 0). If there is a reducible element, then the algorithm does the following updates:

t′k ← t′k + λi,kt
′
i;

c̃k ← c̃k + λi,kc̃i; (5.9)

c̃(k) ← c̃(k) + λ?i,kc̃
(i),

and proceeds to the next iteration with the updated C̃; otherwise, the algorithm terminates. In (5.9), t′k
denotes the kth column of T′, c̃k represents the kth column of C̃ and c̃(k) is the kth row of C̃. The

pseudocode for the described operations can be found in algorithm 3. In terms of complexity, algorithm

3 requires O(N2
T ) in order to find the index pair (i, k). Further, for each basis update, (31NT − 7) arith-

metic operations are required and the number of necessary repetitions of the D-ELR algorithm is lower

than when compared with SA or LLL methods [68]. Therefore, computation-wise D-ELR algorithms
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Algorithm 3 D-ELR-SLB method
Input: H
C̃ = (HHH)−1,T′ = INT

while true do
λi,k ← −

⌈
C̃i,k

C̃i,i

⌋
,∀i 6= k

if (all λi,k = 0,∀i 6= k) then
Output: T = (T′−1)H , H̃ = HT

else
Find the largest reducible C̃k,k
Choose i = arg maxNR

ĩ=1,̃i 6=k ∆ĩ,k

t′k ← t′k + λi,kti
c̃k ← c̃k + λi,kc̃i
c̃(k) ← c̃(k) + λ?i,kc̃

(i)

end if
end while

are better than conventional LR techniques. Finally and unlike other detection methods (randomised

algorithms, for instance), LR-aided detectors complexity is almost independent from the SNR, used con-

stellation, or channel realisations. The effect in BER performance of the herein reviewed procedure will

be studied next.

Once the reduced basis H̃ is obtained and upon doing the proper scaling and shifting, one can use

the conventional receivers to decode the transmitted symbols [54]. Moreover, successive interference

cancellation (SIC) techniques [98] can be used on top of LR-aided methods to further improve perfor-

mance. It is worth noting, however, that by ranking the diagonal elements C̃k,k in the ELR procedure, a

SIC-like detection order is directly obtained. Even though the sorted variance (SV) order provided by the

ELR method is different from the conventional V-BLAST one [99], it has been demonstrated in [68] that

performance degradation is close to negligible. In this manner, SIC sorting procedures costing O(N3
T ),

such as QR decomposition [100], can be avoided.

In order to get the best performance out of the D-ELR algorithms, both MMSE and SV-SIC-MMSE

procedures will be considered; thus, the studied receivers will henceforth be denoted by D-ELR-SLB-

MMSE and D-ELR-SLB-SV-SIC-MMSE, respectively.

For comparison purposes, the best performing conventional receiver MMSE-OSIC will be confronted

with both detectors mentioned above. For a large MIMO configuration (NT = NR = 16) and a 16-

QAM constellation setup, the output is expressed in figure 5.1. As can be seen, the achieved diversity by

both ELR algorithms is about the same and higher than the conventional MMSE-OSIC, whose diversity

does not surpass 1 (as predicted in theory). Nevertheless, when no SIC scheme is used in the ELR

method, MMSE-OSIC outperforms the latter in the low-SNR regime. The results here depicted for the

studied detectors show that it is possible to obtain considerable performance gain by equipping additional

antennas at the base station and with acceptable complexity orders.

Finally, and in order to demonstrate the behaviour of both algorithms for the massive MIMO setup
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Figure 5.1: BER performance of element-based lattice reduction algorithms for NT = NR = 16 and a
16-QAM setup.

(NT = NR = 64) and with a large constellation (256-QAM) configuration, a simulation was run. Its

output is shown in figure 5.2. Once again, it can be inferred that a high diversity gain is achieved, a clear

indication of the suitability of these low complexity detectors for massive MIMO systems.

Even though the results herein presented are as predicted in theory (i.e., LR methods attain maximum

diversity), there is no indication of how far these detectors are from the optimal performance (ML).

Hence, a different approach to solve the problem in (5.4) will be presented next and the ELR methods

will serve a standard for comparison.

5.3 Markov Chain Monte Carlo

The use of advanced statistical methods may lead to significant gains in signal processing for wireless

communications. In particular, Monte Carlo Bayesian methodologies can be employed to find a close

to optimal solution in various signal reception problems, hence closing the gap in performance between

state-of-the-art methods and the communication theory predicted optimal [101, Chapter 8].

Markov chain Monte Carlo (MCMC) methods refer to a class of algorithms that allow one to

draw random samples from an arbitrary target probability density p(x). This sampling process may

be performed using a variety of methods, namely, importance sampling, rejection sampling, Metropo-

lis–Hastings method, Gibbs sampling and slice sampling [102]. Gibbs sampling (GS), which will be

considered in this work, was for the first time described in the seminal paper [103] on image processing.

Let x(t) denote a random variable at time t and S = {sj : j = 1, 2, ..., TS} to be the set of possible

values that x can take, also called space state. A Markov chain is a sequence of random variables
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Figure 5.2: BER performance of element-based lattice reduction algorithms for NT = NR = 64 and a
256-QAM setup.

x(0),x(1), ...x(∞), with the Markov property,

p(x(t+1) = sj |x(t) = si,x
(t−1) = s

(t−1)
i , ...) = p(x(t+1) = sj |x(t) = si), (5.10)

for every sj , si, s
(t−1)
i , ... ∈ S and any t ≥ 0. In other words, the future state only depends on the

present state and not on the entire history of the system. Further, a Markov chain is called reversible if

the balance property is satisfied:

p(x(t+1) = sj |x(t) = si) = p(x(t+1) = si|x(t) = sj), si, sj ∈ S. (5.11)

This is equivalent to stating that the transition probability between sj and si and between si and sj are

the same. The reversibility condition is necessary to ensure that the probability distribution of the chain

converges to the desired one as t→∞ [102].

In the context of MIMO detection, state spaces are formed by the various possible combinations

of x(t), where each entry is taken from the alphabet B. The desired distribution is such that ML cost

is minimum; further, it is desirable that average performance improves with each iteration. A better

description of the Gibbs sampling method will be provided next.

5.3.1 Conventional Gibbs Sampling

A reversible Markov chain is assumed, so that asymptotic convergence to the optimal solution is guar-

anteed. Thus, if the detector is run for a sufficiently long time, there is a certain positive probability

that the optimal solution is visited. Both analysis and implementation will be done using the completely
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equivalent real-valued MIMO channel [66, Equation 3.45]:

Hr =

<(H) −=(H)

=(H) <(H)

 ;yr =

<(y)

=(y)

 ;xr =

<(x)

=(x)

 ;nr =

<(n)

=(n)

 , (5.12)

where yr,nr ∈ R2NR×1, xr ∈ R2NT×1 and Hr ∈ R2NR×2NT . For notation simplification purposes,

n = 2NT = 2NR will be used and the subscript r will be dropped.

At the initial time instant t = 0, an n-dimensional starting candidate x(0) (which can be randomly

chosen or the solution provided by any detector; e.g., MMSE or lattice reduction method) is given to the

MCMC detector. Then, the MCMC detector performs an ”ingenious” random walk over the alphabetAn

based on the to be constructed transition rule.

Under the assumptions that the various transmitted symbols are uncorrelated and the noise is AWGN

with variance σ2n, the integer least squares problem in (5.4) can also be regarded as a closest vector

problem (CVP) in a lattice Gaussian distribution. In particular, the n-dimensional lattice formed by

H =
√

SNR
NT

H (known as the lattice basis) is Λ = {Hx : x ∈ Zn}. Then, one can define the Gaussian

function centred at y ∈ Rn for standard deviation σ2n = 1 > 0 as

ρ(Hx) = exp

(
− ||y −Hx||2

2

)
, (5.13)

for all Hx ∈ Rn. Hence, the previous expression suggests that the joint probability of interest satisfies

p(x1, x2, ..., xn|H,y) ∝ exp

(
− ||y −Hx||2

)
. (5.14)

From the above expression, the transition rule between consecutive states can be computed. Particularly,

it can be regarded as a discrete Gaussian distribution over Λ; hence, sampling techniques such as Gibbs

algorithm are applicable. Assume that at time index t, the current state is given by x(t) ∈ An. Then, at

the next time index, the method uniformly picks one random position j out of {1, ..., n} and computes the

conditional probability of transitioning to each of the possible constellation points. With the remaining

(n− 1) positions fixed, the jth index is updated according to the following stationary distribution [104]:

p(x
(t+1)
j = ω|θ) =

exp

(
− 1

2α2 ||y −Hxj|ω||2
)

∑
xj|ω̃∈A exp

(
− 1

2α2 ||y −Hxj|ω̃||2
) , (5.15)

where xTj|ω = [x
(t+1)
1:j−1, ω,x

(t)
j+1:n]T , θ = {x(t), j,y,H} and α is a positive ”temperature” parameter. So,

conditioned on the jth position is chosen, the MCMC detector will with probability p(x(t+1)
j = ω|θ)

sample ω to position j of x(t+1). An intuition of (5.15) suggests that the closer lattice point Hx is to y,

the higher the probability that it is sampled. The aforementioned process is denoted in the literature by
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Gibbs sampling, where one iteration involves sampling one entry at a time in the following manner [28]:

x
(t+1)
1 ∼ p(x1|x(t)2 , ..., x(t)n ,y,H);

x
(t+1)
2 ∼ p(x2|x(t+1)

1 , x
(t)
3 , ..., x(t)n ,y,H);

... (5.16)

x(t+1)
n ∼ p(xn|x(t+1)

1 , x
(t+1)
2 , ..., x

(t+1)
n−1 ,y,H).

At the end of each iteration, the ML cost in (5.4) is computed and the resulting vector is fed into the next

iteration. The algorithm stops after a certain number of iterations and the algorithms’ output is the vector

with the best ML cost. The pseudocode related with the aforementioned MCMC detector is presented in

algorithm 4.

Algorithm 4 Reversible MCMC Detector Based on Gibbs Sampling

Input: y,H, initial vector x(0), number of iterations tmax

Denote the decision vector by z

Denote the ML cost function as f(·)
for t = 1 to tmax do

Pick a position index j ∈ {1, 2, ..., n} from a uniform distribution
Fix the (n− 1) symbols of x(t), and transition the jth symbol of x(t) to ω according to (5.15)
Denote the new vector by x(t+1)

if f(x(t+1)) < f(z) then
Update z = x(t+1)

end if
end for
Output: z

Note that other randomised lattice Gaussian sampling exist in the literature, namely Klein and Gibbs-

Klein algorithms [105, 106]. However, these will not be considered since the next studied method is

proven to perform better [107].

5.3.2 Implementation and Complexity of Gibbs Sampling

For the sake of implementation (to limit complexity), a sequential rather than a reversible MCMC de-

tector will be considered. The only difference resides in the way the updated position index j is chosen.

In sequential detection, each iteration consists of a block iteration, where the n indices are updated

sequentially, hence the name.

Denoting the difference at iteration t as d(t) = y −
√

SNR
NT

Hx(t) and in order to further reduce

complexity, one may notice that only the jth symbol is changed when (5.15) is computed [104]. Conse-

quently, d(t) can be expressed as:

d(t) = d(t−1) −
√

SNR
NT

hj∆xj|ω, (5.17)
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where ∆xj|ω = x
(t)
j|ω − x

(t−1)
j|ω and hj is the jth column of H. Therefore, the complexity of computing

the norms in (5.15), when the jth symbol is changed, is 2n complex operations (n multiplications for

each of the products (d(t)))Td(t) and hj∆xj|ω). Further and assuming that the number of required

iterations will be large (processing for massive MIMO systems), the complexity of an MCMC detector

can be reduced even further. This can be achieved by means of a QL factorisation of the channel matrix,

H = QL and by rewriting (5.4) as [108]

x̂ = arg min
x∈An

||ỹ −
√

SNR
NT

Lx||2, (5.18)

where ỹ = QTy. Exploiting the fact that L is a lower triangular matrix, the first difference d(0) =

ỹ − Lx costs n + 2
∑n

i=1 i = n(n + 2) multiplication and addition operations (which is lower than

the conventional model 2n2). Moreover, at each iteration the difference d(t−1) −
√

SNR
NT

lj∆xj|ω will

require 2(n+1
2 )(|A| − 1) arithmetic operations. If the conventional model was used, the corresponding

complexity would be 2n(|A|−1). Then, and taking into account that computing ỹ yieldsO(23n
3+2n2),

there is a gain in complexity if

n(n+ 2) + tmax(n+ 1)(|A| − 1) +
2

3
n3 + 2n2 < 2ntmax(|A| − 1) + 2n2, (5.19)

which holds true when

tmax >
2
3n

2 + n+ 2

(|A| − 1)(n− 1)
n ≈

2
3n

2 + n

|A| − 1
. (5.20)

Another possibility to keep complexity low, especially in higher constellations (64-QAM and higher), is

to only sample one-symbol away neighbours, as suggested in [107].

5.3.3 Gibbs Sampling Performance

So far, the details, including complexity, of the conventional Gibbs sampling for MIMO detection were

given. The performance of the method shall now be evaluated. To this purpose, set the maximum

number of block iterations tmax = 500 and the ”temperature” parameter equal to the noise variance, that

is α2 = 1. For a symmetric system NT = NR = 10 and a 4-QAM constellation, the corresponding BER

plot is shown in figure 5.3. For comparison purposes, performance of MMSE and D-ELR-SLB-SV-SIC-

MMSE are also depicted. As can be inferred for low SNR, the performance is very close to optimal.

However, in the medium to high SNR, the BER did not improve any further. This problem is referred

in the literature as the ”stalling problem” [109]. This effect can be explained as follows: consider a

case where for a candidate vector x(t), the norm ||y−Hx(t)|| is significantly smaller than ||y−Hx
(t)
j|ω̃||,

where x(t)
j|ω̃ is the same x(t) with jth position changed with ω̃. In this situation and, especially when SNR

is high, one may find that after sampling P (x(t+1) = x(t)|y,H) ≈ 1 and P (x(t+1) = x
(t)
j|ω̃|y,H) ≈ 0

[109]. Thus, the conventional Gibbs sampler may remain stuck in the same state for a very long time and

that effect consequence is depicted in figure 5.3, as the number of iterations was fixed to tmax = 500. All
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in all and even though the chain is guaranteed to converge asymptotically when t → ∞ [102], stalling

may occur. A possible solution to alleviate this problem is studied next.
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Figure 5.3: BER performance for conventional Gibbs sampling detection algorithm for NR = NT = 10
and a 4-QAM constellation.

5.3.4 Mixed Gibbs Sampling with Multiple Restarts

As stated previously, stalling occurs because the ML cost of the state vector may be trapped in a local

minima for many iterations [107]. That is in part due to the norm inside the exponential in (5.14), which

may cause disparate sampling probabilities. One possible approach is to try and optimise the temperature

parameter α such that the probability of encountering the optimal solution is as high as possible. This

evaluation was done in [104] and its performance will be shown in a subsequent section. In this part

and following what was done in [107], a mixed Gibbs sampling will be studied. This consists of a slight

change in the update rule in (5.16) . Instead of drawing samples from (5.15) with probability one, there

is a chance q∞ = (1− q1) that the values are instead taken from a uniform distribution as

p(x
(t+1)
j = ω|θ) ∼ U [0, 1], (5.21)

such that
∑
p(x

(t+1)
j = ω|θ) = 1. This corresponds to setting α = ∞ in (5.15). Hence, the method

acquires the name of mixed Gibbs sampling (MGS), and as long as q∞ is chosen accordingly, the stalling

problem is alleviated: if stuck in a local minima there is a non-zero probability q∞ that the detector

performs a random walk to move away from the local solution. Unless otherwise stated, the mixing ratio

value is set to q∞ = 1
n (as suggested in [107]), which is equivalent to performing one random walk per
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each block iteration on average.

To further improve performance, a multiple restart (MR) technique, as proposed in [107] will also

be contemplated. Due to the random nature of MGS, different instances of the algorithm may lead to

different outputs, even when the inputs values are the same. Denote the maximum number of allowed

restarts by R. When R > 1, the output solution is the one yielding the lowest ML cost and since each of

the restarts is independent of the others, a parallel computation of the various instances can be performed

to decrease overall detection time.

With the introduction of MR, the algorithm has now three distinct loop levels: R restarts, t block

iterations and n sampling processes per block iteration. Thus, the method can become computationally

demanding. However, when a close enough solution to optimal has already been found, additional itera-

tions may be redundant. Hence, in order to limit complexity, suitable stopping criterion can be defined.

If the ML cost remains unchanged for two consecutive block iterations, stalling is said to have oc-

curred [107]. Then, stalling mode is entered, where only a maximum number of iterations θs more is

allowed. If during stalling mode, a vector x with lower ML cost is found, then stalling mode is left; else,

the algorithm terminates after θs iterations. The parameter θs is chosen large if the stalled ML cost is

high and chosen small when the margin for improvement is narrow. If the algorithm does not stop as a

result of the stalling mode, then the initially set maximum number of block iterations tmax are performed.

Under the considered model and when x is error free, the ML cost is ||n||2, whose distribution is

a chi-square with 2NR degrees of freedom, mean NRσ
2
n and variance NRσ

4
n [56, Chapter 11]. Thus, a

standardised ML cost of solution vector x can be characterised as [107]

φ(x) =
||y −

√
SNR
NT

Hx||2 −NRσ
2
n

√
NRσ2n

. (5.22)

Metric (5.22) can be seen as a a difference between ML cost and the mean of ||n||2 normalised by

the standard deviation of ||n||2 (note that under the channel model in (5.2), σ2n = 1). In addition to

the ML cost, the stopping criteria θs should also take into account the size of the QAM constellation.

Accordingly, [107] proposed the following:

θs(x) = dmax(cmin, 10 log2M exp(φ(x)))e, (5.23)

where cmin is the minimum number of iterations following a stalling event.

Likewise, a stopping criteria for the maximum number of repetitions R can be defined. In a similar

fashion to the previous case (see [107] for further insight), the algorithm stops if the number of restarts

performed so far is greater than the following integer threshold:

P = bmax(0, 0.5 log2Mφ(x))c+ 1. (5.24)
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The usage of both MGS and the stopping criteria in (5.23) and (5.24) will provide close to optimal

solutions, while yielding limited complexity, as will be verified in the next section.

5.3.5 Numerical Results

The performance of the described mixed Gibbs sampling with restarts will be evaluated here. Setting

the number of antennas N = 10, maximum number of restarts R = 15, maximum number of iterations

tmax = 160 and cmin = 10, the results are depicted in figure 5.4. The initial vector for the first restart

was the output of the MMSE filter and for the remaining restarts a random initial vector was used. As

can be inferred, the stalling problem was efficiently fixed with the use of MGS-MR. Further and as was

expected, the attained diversity by MGS-MR is similar to the one obtained by the lattice reduction-aided

method. Moreover, the gain in BER of MGS-MR over D-ELR-SLB-SV-SIC-MMSE is not negligible. In

particular, the randomised algorithm requires around less 3 dB than the studied LR algorithm to achieve

a BER of 10−3.
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Figure 5.4: BER performance for both conventional Gibbs sampling and mixed Gibbs sampling with
restarts detection algorithms for NR = NT = 10 and a 4-QAM constellation.

Large MIMO detection with MGS-MR shall now be evaluated. Increasing dimensions to NT =

NR = 16, using a 16-QAM constellation and setting tmax = 512, the results are shown in figure 5.5.

As was expected, in the low SNR regime, the performance is near ML and better than the one achieved

by LR method. However, for SNR ≥ 20 dB, the MCMC detector suffers a degradation in performance.

This phenomenon is related with the rather low convergence rate (mixing time) of the underlying Markov

chains, since α2 = 1. Particularly, this choice for α will cause the Markov chain to take a long time to

reach its stationary distribution [104]. To solve this problem, three different approaches are possible:
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1. Try and optimise the mixing ratio q∞ as a function of the SNR.

2. Find the dependence of α with the value of the SNR.

3. Increase the maximum number of iterations tmax and use different, better initial vectors x(0), at

the cost of increased complexity.

Option 2 from the above will be evaluated next.
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Figure 5.5: BER performance for both conventional Gibbs sampling and mixed Gibbs sampling with
multiple restarts detection algorithms for NR = NT = 16 and 16-QAM constellation.

5.3.6 Gibbs Sampling with Optimised ”Temperature” Parameter

The ”temperature” parameter α controls the mixing time of the underlying Markov chain and its choice

should be such that the probability of encountering the optimal solution is maximum [104]. On the one

hand, if α is chosen too small, convergence rate becomes low, which is undesirable. On the other hand,

with a large α the chances of finding the optimal solution in stationary distribution become exponentially

small. Hence, there is a trade-off in the choice for α. The MGS-MR method tried to circumvent this

difficulty by using an alternating sampling method between α = 1 and α = ∞. However, as seen

previously, this choice did not prove to be effective in the high SNR regime.

The mixing time of MCMC detector is closely related to the existence of local minima and the

average number of these increases with the number of antennas. Hassibi et al. [104] verified this fact and

derived an optimal α2 for the case when a {−1, 1} constellation set is used. In this work, the result will

be used for larger constellations without further proof. Thus, the proposed α2
opt. in [104] will be denoted
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here as the ”optimal temperature” parameter, being given by:

α2
opt. =

SNR
log(n)

+

√(
SNR

log(n)

)2

− 2
SNR

log(n)
, (5.25)

only valid for SNR > 2 log n, as one is interested in. The result in (5.25) suggests that αopt. scales with

O(
√

SNR), for fixed n, which means that faster mixing times are required in the high SNR regime.

In order to demonstrate that MCMC methods employing Gibbs sampling converge to the optimal

solution and the importance of the parameter α, a study of BER evolution in terms of the number of

iterations shall now be performed. For that purpose, SNR was fixed and a set of values for α2 was

chosen, including α2 = 1 and α2 = α2
opt.. Using the MMSE filter output as the initial vector, figures

5.6 and 5.7 show the change in BER with an increasing number of iterations. For comparison purposes,

conventional detectors are also depicted. The first thing to be noticed in figure 5.6 is the fast convergence

of the GS method to the ML performance when α2 = ”optimal” (blue line). Moreover, it is interesting

to observe the rapid BER decay in the first few iterations for when α2 = 1 and then the stalling effect, as

had been previously verified. Higher choices of α2 (namely, α2 = 9 and α2 = 18) proved not to improve

the MMSE initial solution any further.

Denote the detector using α2 = ”optimal”, mixing ratio q∞ = 0 and multiple restarts, as optimised

Gibbs sampling with multiple restarts (OGS-MR). The results corresponding to OGS-MR are depicted

in figure 5.8. For comparison purposes, the remaining used parameters are identical to the ones used to

obtain figure 5.4. As can be seen and as expected, the problem in the high SNR regime was partially

mitigated, confirming that choosing an α different from 1 is indeed beneficent. Nonetheless, the stalling

problem is present once again and that is due to the existence of relative minimums, as explained in the

comments regarding figure 5.3.

Having in mind the results obtained so far, a combination of both MGS and OGS methods will be

proposed next. As will be seen, the suggested variant will close the gap in performance for large MIMO

detection and for high SNR values.

5.3.7 Triple Mixed Gibbs Sampling

Thus far, it has been verified that a good choice of the temperature ”parameter” α is preponderant in

the performance of randomised algorithms based on Gibbs sampling. The choice of α may be seen as a

trade-off between reliability and convergence speed; hence, a poor choice for α may lead to rather slow

progress in high dimensions [102]. To circumvent the problem, two different approaches have been char-

acterised and evaluated; though neither of them performed as one would expect, especially for high SNR.

Based on the results obtained in the previous sections and corresponding justifications, a triple mixed

Gibbs sampling (T-MGS) algorithm is going to be proposed here. The idea is to, at each iteration, pick

a value for α based on the set {1, ”optimal”,∞} with a given probability distribution. At a given time

instant, choosing α = 1 ensures convergence to optimal solution, α2 =”optimal” assures a quick mix
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Figure 5.6: BER performance for conventional Gibbs sampling with different ”tem-
perature” parameters. NR = NT = 10 and a 4-QAM constellation were used.
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Figure 5.7: BER performance for conventional Gibbs sampling with different ”tem-
perature” parameters. NR = NT = 16 and a 16-QAM constellation were used.
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Figure 5.8: BER performance for optimised Gibbs sampling with multiple restarts detection algorithm
for NR = NT = 16 and a 16-QAM constellation.

to steady state and α = ∞ (pure random walk) is necessary to avoid local minima (which leads to the

observed stalling effect). As will be verified, with a properly chosen mixing ratio one can solve the

previously identified problems.

As a first approach, let q∞ denote the probability that at each iteration a random walk is performed.

If it is not executed, then the chances of picking α2 = 1 or α2 = ”optimal” are given by (1− q∞)q1 and

(1 − q∞)qopt., respectively. When MGS-MR (qopt. = 0) was discussed, a value of q∞ = 1/n was used

[107]. However, with the addition of a third possible value for α2, setting q∞ = 1/n is not a good choice

any more as the number of stalling events is lower when α2 > 1.

In order to get a grasp of the optimal value for q∞, consider q1 = qopt. = 1/2 (note that under the

used model, the condition q1+qopt. = 1 must be satisfied). Fixing the SNR at 18 and 19 dB, an evaluation

of the BER performance in terms of the number of iterations, for different mixing ratios q∞, is presented

in figure 5.9. The number of antennas was N = 16, a constellation size of 16-QAM was used and the

maximum number of iterations was set to tmax = 800. Only one restart was performed and the used

initial vector was the MMSE solution. First thing to be inferred from figure 5.9 is that in both cases it

is a non-zero mixing ratio (q∞ 6= 0) that minimises the BER, hence proving the advantage of having a

triple MGS algorithm. Additionally, the minimum value for different SNR values is attained for different

values of q∞, implying that the optimal value of q∞ also has a dependence with the SNR. Nevertheless,

the gain of such optimisation is almost negligible and should be mitigated when more than one restart is

performed. Henceforth and otherwise stated, the value of q∞ = 1/(20NT ) will be adopted.

A step-by-step description of the proposed algorithm including multiple restarts can be found in
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Figure 5.9: Study of the impact of average BER performance for different mixing ratios q∞. SNR was
fixed at 18 and 19 dB, the number of antennas set to NT = NR = 16 and the constellation size was
16-QAM.

algorithm 5, where pmf stands for probability mass function. It is worth mentioning that the previously

mentioned MGS-MR corresponds to doing q∞ = 1/n and q1 = 1, whilst OGS-MR coincides with

setting q∞ = q1 = 0 in algorithm 5. The ”temperature” parameters and corresponding mixing ratios are

summarised in table 5.1.

Finally, a performance comparison for both convergence rates and BER values of the LR method

and randomised algorithms is conducted. In order to demonstrate the superiority of the here proposed

variant over the algorithms in [107] and [104], the average BER as a function of the iteration number was

simulated and is depicted in figure 5.10. Number of antennas was set toN = 16, a 16-QAM constellation

was used and the number of iterations was tmax = 1000. Further, two SNR values were studied, namely

15 and 20 dB. For comparison purposes the sphere decoder performance (ML-like) is also shown. For

each channel realisation, only one restart was performed and the MMSE filter output was used as the

initial solution.

`````````````̀Variant
Mixing Ratio

q∞ (α2 =∞) q1 (α2 = 1) qopt. (α2 = α2
opt.)

MGS 1/2NT 1 0

OGS 0 0 1

T-MGS 1/20NT 1/2 1/2

Table 5.1: ”Temperature” parameters and corresponding mixing ratios used to compare the various GS
methods, including the proposed one, for N = 16 and when a 16-QAM constellation size is used.
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Algorithm 5 Triple Mixed Gibbs Sampling Algorithm with Multiple Restarts and Stopping Criteria

Input: y,H,x(0), tmax, q∞, q1, R

Define:
f(x)→ML cost function (eq. (5.4))
φ(x)→ Normalised ML cost function (eq. (5.22))
θs(x)→ Stalling limit function (eq. (5.23))
p(x, α|θ)→ Transition probability distribution (eq. (5.15))
cb → Cost of best candidate so far; set initial cb to∞
Compute:
for r = 1 to R do

Initial candidate: z = x(0); Initial cost: β = f(z)

t = 0

while t < tmax do
for i = 1 to n do

generate r1, r2 ∼ U [0, 1]

if r1 < q∞ then
generate pmf p(x(t+1)

i = ω) ∼ U [0, 1], ∀ω ∈ A
sample x(t+1)

i from this pmf
else

if r2 < q1 then
α2 = 1

else
α2 ∝ SNR (according to eq. (5.25) and table 5.1)

end if
x
(t+1)
i ∼ p(xi, α|x(t+1)

1 , ..., x
(t+1)
i−1 , x

(t)
i+1, ..., x

(t)
n )

end if
end for
γ = f(x(t+1))

if γ ≤ β then
z = x(t+1); β = γ

end if
t = t+ 1; β(t)v = β

if β(t)v == β
(t−1)
v then

compute θs(z)

if θs < t then
if β(t)v == β

(t−θs)
v then

break while
end if

end if
end if

end while
if f(z) < cb then

zb = z; cb = f(zb)

end if
compute P = bmax(0, 0.5 log2Mφ(zb))c+ 1

if P < r then
break for

end if
end for
Output: zb
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For 15 dB it can be verified in figure 5.10 that all of the algorithms converge to the SD solution;

though both OGS and the proposed variants require less iterations in order to achieve it. This faster

convergence rate becomes even more preponderant in the high SNR regime (20 dB) where the proposed

T-MGS beats both MGS and OGS alternatives. It is worth emphasising that for 20 dB average BER

performance is not optimal (SD-like); hence showing the importance of the multiple restarts feature.

Iteration Number
0 100 200 300 400 500 600 700 800 900 1000

B
E

R

10-5

10-4

10-3

10-2

10-1

100
16 x 16 , 16-QAM

MGS, α2 = 1, ∞

OGS, α2 = "optimal"

Prop., α2 = 1, SNR / log(n), ∞
SD

SNR = 15 dB

SNR = 20 dB

Figure 5.10: BER performance as a function of the number of iterations for the optimised, mixed and
triple mixed Gibbs sampling algorithms. The number of antennas was set to NR = NT = 16 and a
16-QAM constellation was used.

Reconsidering the case where R = 15 and the stopping criteria as was done for figures 5.5 and

5.8, BER performance including the T-MGS detector is shown in figure 5.11. The previously identified

problems have been mitigated by T-MGS and the curve shows that optimal diversity is indeed obtained

for the entirety of the studied SNR range. Moreover, for a reference BER value of 10−3, a gain of 5

dB is attained by the proposed algorithm over the state-of-the-art LR method. Taking into account the

previously mentioned complexity reduction techniques and the attained performance, T-MGS is certainly

a suitable candidate for solving the detection problem in large MIMO systems. In addition, it is worth

emphasising that the algorithm is parallel architecture-friendly, which is, in this day and age, becoming

an increasingly important feature.

In order to further confirm the suitability of the proposed algorithm for very large MIMO (N =

32), a simulation using q∞ = 1/(10NT ), R = 15 and tmax = 1000 was performed. The result is

depicted in figure 5.12, and the previously obtained conclusions can also be applied here. Note that,

further augmenting the number of antennas or the constellation size would lead to a drastic increase in

complexity, even using the stopping criteria or the complexity reduction techniques suggested in section
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Figure 5.11: BER performance as a function of the SNR for the optimised, mixed and triple mixed Gibbs
sampling algorithms with multiple restarts for NR = NT = 16 and a 16-QAM constellation.

5.3.2. Nonetheless, the algorithm can be efficiently used to obtain an estimate of SD performance for any

number of dimensions, provided the initial vector is close to the initial solution (for instance, feeding the

solution of the D-ELR algorithm as the initial vector in T-MGS would lead to a lower number of average

number of required iterations).

5.4 Concluding Remarks

In this chapter, an optimised randomised algorithm based on Gibbs sampling has been evaluated. Partic-

ularly, a trade-off between convergence rate and the probability of finding the optimal solution has been

identified. The existing approaches in the literature have been replicated here and based on the corre-

sponding results, a faster, better performing alternative has been proposed. Specifically and yielding the

same complexity, the suggested variant converges to the optimal solution faster, whilst alleviating the

stalling problem in the high SNR regime. Further, it was demonstrated that the implemented algorithm

outperforms a state-of-the-art lattice reduction method.

Even though some techniques to limit and reduce Gibbs sampling complexity have been reviewed in

this thesis, it is left for future work the introduction of more efficient methods to perform detection in

massive MIMO (N > 32) with large constellations (64-QAM and beyond). Furthermore, the extension

to soft-decoding of the proposed algorithm and corresponding hardware implementation (making use of

the GPU3[110], for example) would also be an interesting topic for research.

3Graphical Processing Unit
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Figure 5.12: BER performance as a function of the SNR for the proposed triple mixed Gibbs sampling
algorithm with multiple restarts for NR = NT = 32 and a 16-QAM constellation.
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Chapter 6

Application of Massive MIMO

(this chapter results from a joint work with João Sande Lemos [111])

In this chapter the system model of an in-band full-duplex relay employing massive MIMO is de-

tailed. The challenges as well as the benefits of such setup are studied. In addition, simple yet effective

filtering and power allocation schemes are proposed and evaluated.

6.1 In-Band Full-Duplex

In a communications system using a given channel, the bidirectionality of the transmission is called

duplexing. Its feasibility is guaranteed when the interference between transmission and reception is

eliminated. Presently, in wireless communications, the interference is avoided using independent trans-

missions in either time (TDD) or frequency (FDD). These systems are denoted as half-duplex (HD),

since only half of the available spectrum and/or time-slots are actually utilised for an one-way com-

munication. Taking into account the requirements of future generation networks, the use of in-band

full-duplex (IBFD), i.e., transmit and receive data in the same time-slot and frequency band, would be

advantageous. The gain would be in terms of spectral efficiency, since, using the same resources, IBFD

offers the possibility of doubling the transmission rates when compared to the HD counterpart.

However, the problem with IBFD radios is the self-interference component that appears on the re-

ceived signal and that is caused by the system’s own transmit antennas. Because the power density of

an electromagnetic wave is proportional to the inverse of the square of the distance, the loopback inter-

ference (LI) power can be several times greater than the power of the signal of interest. Therefore and

in order to achieve full-duplex capacity, self-interference suppression techniques must be utilised. This

problem has attracted significant attention and a considerable amount of follow-up research has been

conducted in the past few years.

The main techniques used to mitigate LI in the literature can be divided in three categories [112]:

Antenna Separation and Natural Isolation This passive method consists of increasing the separation

distance between the transmitting and receiving antennas. A larger separation leads to better can-
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cellation but also implies the increase of the size of the terminals. Electrical insulating materials

to attenuate any line-of-sight or scatterer component between the transmitting and receiving sides

can also be employed.

Analog-Domain Cancellation Another possibility is to use active suppression mechanisms where a

cancelling signal is sent through RF chains to cancel the self-interference signal at the analog

domain of the receive antenna.

Digital-Domain Cancellation The knowledge of the transmitted signal or of some of its statistics can

be effectively exploited to suppress LI in the digital-domain using signal processing techniques.

The simultaneous use of all of the aforementioned techniques is possible and is often assumed in the

literature. This is due to the considerable amount of self-interference that must be suppressed. As an

example [113], for a typical femto base station to achieve the link SNR equal to that of a HD counterpart,

it must cancel the LI component by more than 106 dB. Moreover, other hindrances, such as limited A-D

converter resolution and dynamic-range, channel estimation errors and amplifier nonlinearities must also

be taken into consideration in the design of the system.

In this chapter, the focus of the study will be digital signal processing techniques, while both analog-

domain cancellation and antenna separation are assumed to be present.

6.1.1 In-Band Full-Duplex Applications

Widespread commercial in-band full-duplex radios may still be a few years away. This is mainly due

to the technological challenges behind suppressing LI. Nonetheless, a large number of academic and re-

search laboratories have already experimentally demonstrated the feasibility of IBFD [114]. It is believed

that IBFD technology will first appear in relays serving small-scale wireless communication environ-

ments, such as wireless routers [115] or femto base stations. In these short-range systems, the employed

power values are typically low, hence it is less difficult to deal with the LI [113].

In order to further improve the transmission rates, IBFD and MIMO technologies can be combined.

As will be confirmed in this chapter, MIMO processing provides an effective means of suppressing LI in

the spatial domain [18]; a gain that becomes more preponderant in larger dimensions, i.e., when massive

MIMO is being employed.

6.2 System Model

In this section, the system model for a massive MIMO full-duplex relay architecture will be presented.

Some assumptions commonly present in the literature will also be made in this work. These simplifica-

tions come from the inherent difficulty in finding a channel model that is consistent with real measure-

ments.
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Consider that K user pairs establish a wireless connection through a relay station, which operates in

IBFD mode. Each pair consists of K sources and K destinations, equipped with a single antenna. The

relay uses two massive MIMO arrays to simultaneously transmit and receive signals from the different

users. The number of antennas used for reception and transmission purposes is denoted by Nrx and Ntx,

respectively. All sources transmit in the same time slot, hence at the relay we have both self-interference

and inter-user interference to be dealt with.

The nonexistence of direct links between the different users is assumed. This presumption might be

unrealistic but, depending on the scenario, it might be considered acceptable due to path loss effect and

severe shadowing (as will be seen later in this chapter, the allocated power at the relay is a few dB greater

in magnitude than the assigned powers at the sources). Nonetheless, a direct link between the different

users could be exploited in order to design a more reliable system, using both received signal from relay

and corresponding pair [116].

The number of antennas at the relay may go up to a few hundred and the number of served users

is in general considered to be much lower, i.e., K << Ntx, Nrx. The relay operates in decode-and-

forward (DF) mode, which means detection is applied to the received symbols before retransmission.

Alternatively, an amplify-and-forward (AF) relay could have been considered [117, 118]. A simplified

representation of the studied model is presented in figure 6.1.

Decode-and-Forward 

Full-Duplex

Relay

Loopback 

Interference

Figure 6.1: Model for full-duplex relay serving K pairs of users.

6.2.1 Channel Model

For the evaluation of the performance of the above described setup, the vectors containing the transmitted

symbols from the sources to the relay and the beamformed symbols from the relay to the destinations,

denoted by x ∈ CK×1 and t ∈ CNtx×1, respectively, have to be taken into consideration. Vector x is

taken from an M -QAM constellation and the output signals to be normalised and uncorrelated, such that

E{xxH} = I and E{tHt} = 1. In this manner, the power transmitted by each source is independent of
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K and the total transmitted power at the relay dissociated from Ntx. The received vectors at the relay

and at the destinations are given by (6.1) and (6.2), respectively.

r = GSRD
1/2
pS

x +
√
pRHLIt + nr. (6.1)

yd =
√
pRGRDt + nd. (6.2)

The uplink symbols in x pass through a MIMO channel from the sources to the relay denoted by

GSR ∈ CNrx×K , whereas the symbols from the relay to the destinations are filtered by GRD ∈ CK×Ntx .

Both matrices are expressed as GSR = HSRD
1/2
SR and GRD = D

1/2
RD HRD, where DSR and DRD are

diagonal matrices with entries βSR,k and βRD,k taken from a lognormal distribution [56, Chapter 29],

which account for large-scale fading. The fast-fading channel components are present in HSR and HRD,

both with independent entries taken from a CN (0, 1) distribution. The LI channel is represented by HLI

with distribution CN (0, σ2LI), where σ2LI accounts for the residual LI power after self-interference sup-

pression imposed in the analog-domain. The vectors nr ∼ CN (0, σ2nr
) and nd ∼ CN (0, σ2nd

) account

for additive white Gaussian noise at the relay and destinations, respectively. Finally, the diagonal matrix

DpS with entries pS,k regulates each source transmit power, while pR denotes the relay’s average transmit

power.

6.2.2 Channel Estimation

In order to efficiently apply detection, precoding and LI mitigation techniques, channel estimates H̃SR,

H̃LI and H̃RD of the true HSR, HLI and HRD are required. Applying any of the estimation algorithms

proposed in the literature [119], it is assumed that any error in the channel matrices is well modelled by

EHSR , EHRD , EHLI ∼ CN (0, ε2H). The difference between the non-ideal estimates and the true channel

values are then assumed to be given by

HSR = H̃SR + EHSR ;HLI = H̃LI + EHLI ;HRD = H̃RD + EHRD . (6.3)

The magnitude of the errors of the different matrices is dependent of various factors, including the power

used for piloting, number of time slots allocated for channel estimation or noise variance. The large-scale

fading matrices, DSR and DRD, are assumed to be perfectly known.

Another aspect that may cause errors in the estimations are hardware imperfections, which similarly

to the previous case are going to be taking into consideration by modelling the transmitted signal as

[120]:

t = t̃ + Et,

where t̃ is the vector to be transmitted after baseband filtering and where all the elements of Et ∼

CN (0, ε2t) are assumed to be uncorrelated with t̃. It is worth mentioning that the covariance of the LI

term
√
pRHLIt in (6.1) is controlled by the parameters pR, σ2LI, ε

2
t and ε2H. A complete representation of
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the designed model, including the used notation, is shown in figure 6.2.

Figure 6.2: Model for full-duplex relay serving K pairs of users, including used filters and notation.

6.2.3 Detection and Precoding

The objective of a conventional bidirectional communication system is to reliably transmit and receive

data. In order to achieve this goal in an IBFD system, the constraint posed by the LI must be dealt with.

In this work, the filters to perform detection, beamforming and LI mitigation are going to be designed in

a dissociated way. With this approach, the chance to use other detection and precoding methods in future

work becomes available, as well as the possibility to design different schemes to suppress LI.

Consider, for the moment, an equivalent received signal r̂, whose LI component has been minimised.

Hence, one is in the presence of an uplink channel where K << Nrx. Under this assumption, linear

processing techniques are proven to perform close to optimal [18]. The usage of ZF filtering for both

detection and beamforming [121] will be considered henceforth. Note that other detection and precod-

ing methods, at the expense of more computational complexity, could be utilised. However, given the

dimensions of the considered system, performance gain would be negligible. Nevertheless, none of the

results given in this chapter require the condition K << Nrx, thus the study of an hybrid solution for

when K → Nrx could be conducted.

Using the estimation of GSR, denoted by G̃SR = H̃SRD
1/2
SR , the estimated symbols after a ZF filter

Wzf are given by [121]:

x̂ = Q(Wzfr̂) = Q
(
(G̃H

SRG̃SR)−1G̃H
SRr̂
)

= Q(G̃†SRr̂), (6.4)

whereQ(·) is a symbol-wise quantiser to the constellation set. Upon detection based on x̂, the estimated

symbols are forwarded to the destinations, which are assumed to have limited processing capabilities.
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Thus, a ZF precoder Azf is used. The corresponding expression is

t̂ = Azfx̂ = αzfG̃
H
RD(G̃RDG̃

H
RD)−1x̂, (6.5)

where G̃RD = D
1/2
RD H̃RD is the estimation of the true GRD and αzf =

(
E(tr{(G̃RDG̃

H
RD)−1})

)− 1
2 is a

scalar chosen to normalise the power of t̂, i.e., E(t̂H t̂) = 1. From the definition of H̃RD ∼ CN (0, 1 +

ε2H), αzf comes as (cf. appendix A):

αzf =

√
(Ntx −K)∑K

k=1

(
βRD,k(1 + ε2H)

)−1 . (6.6)

6.3 Loopback Interference Mitigation

Thus far, only the detection and precoding stages were considered and were designed taking into account

that LI was not present. The problem of suppressing LI using linear processing will now be evaluated.

6.3.1 Linear Filtering

Under the model given by (6.1), one is interested in minimising the LI term
√
pRHLIt, while preserv-

ing the signal GSRD
1/2
pS x and taking into account the covariance of the noise vector Rnr at the relay.

Hence, the mean square error between the desired signal and the one received by the relay station is

E((GSRD
1/2
pS x− r̂)(GSRD

1/2
pS x− r̂)H). Using the method proposed in [120], a linear prefilter Ftx and

postfilter Frx are considered, such that t̃ = Ftxt̂ and r̂ = Frxr. The filter that finds the MMSE when Frx

is fixed satisfies (cf. appendix B)

FrxH̃LIFtx = 0, (6.7)

and when Ftx is fixed becomes (cf. appendix B)

Frx = G̃SRDpSG̃
H
SR(G̃SRDpSG̃

H
SR + pRH̃LIRtH̃

H
LI + Rnr)−1, (6.8)

where Rt = FtxAzfRx̂A
H
zf F

H
tx + ε2tI. The solution provided by (6.7) corresponds to the null-space

projection already presented in [120], and in general finding a reliable solution for large dimensions is

hard. On the contrary, (6.8) is a closed-form expression containing the channel estimates and covariance

matrices of transmitted vectors and noise, that are assumed to be known. Under the considered model

and for a given set of parameters, a trade-off in the end-to-end (e2e) BER is expected. On the one hand, a

lower transmitted power at the relay pR reduces the LI power and diminishes any impact of the estimation

errors and radiofrequency impairments. On the other hand, a higher pR leads to improved signal-to-noise

ratio (SNR) levels at the destinations and hence a lower BER in the forward link channel. Therefore, for

a fixed source transmit power, an optimal choice for pR that minimises the e2e BER can be anticipated.
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Numerical results for this fact are shown and evaluated in section 6.6.2.

6.4 Achievable Rates

Other figures of merit of the system, other than BER performance, can take advantage of the inclusion

of LI mitigation filters Frx and Ftx. The theoretical expressions for the achievable rates, as well as their

dependence with the allocated powers, will be detailed in this section.

For a given channel realisation, it is possible to compute the achievable rate of each individual link.

As was done in [122], the overall rate Rk is considered to be the minimum of both downlink and uplink

rates in the following manner:

Rk = min(RSR,k, RRD,k), (6.9)

where RSR,k and RRD,k denote the achievable rates between the sources and the relay and between the

relay and the destinations, respectively. To obtain the overall achievable rateRk, one starts by considering

the kth user received signal at the relay after filtering and before detection given by

yr,k =
√
pS,k(WzfFrx)Tk gSR,kxk

+
∑K

j 6=k
√
pS,j(WzfFrx)Tk gSR,jxj

+
√
pR(WzfFrx)TkHLIt + (WzfFrx)Tk nr,

(6.10)

where gSR,k denotes the kth column of GSR. The received signal at each destination link before detection

is given by

yd,k =
√
pRg

T
RD,k(FtxAzf)kx̂k

+
√
pR
∑K

j 6=k
gTRD,k(FtxAzf)j x̂j + nd,k.

(6.11)

Both expressions (6.10) and (6.11) may be seen as a known mean gain times the desired signal plus

an uncorrelated effective noise term that includes channel impairment effects, interpair and loopback

interference, and Gaussian noise. A valid technique commonly used in large MIMO systems [123] is

to approximate the effective noise term by a Gaussian noise term under the central limit theorem, and

which gives a good approximation for RSR,k as follows [18]

RSR,k = log2

(
1 +

pS,kMVSR,k

pS,kVSR,k +
∑K

j 6=k pS,jMPSR,(k,j) + pRLISR,k + ANSR,k

)
, (6.12)

where MVSR,k = |E{(WzfFrx)Tk gSR,k}|2, VSR,k = Var{(WzfFrx)Tk gSR,k}, MPSR,(k,j) =

E{|(WzfFrx)Tk gSR,j |2}, LISR,k = E{||wT
zf,kFrxHLIFtxAzf||2} and ANSR,k = σ2nr

E{||(WzfFrx)k||2}.

The term MVSR,k denotes the mean gain after filtering associated with the kth uplink user, while VSR,k

stands for the associated variance in the actual gain. The term MPSR,(k,j) corresponds to the inter-user
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interference from user j in user k and LISR,k the residual interference that the filters cannot suppress.

Finally, ANSR,k denotes the additive enhanced noise.

Similarly, RRD,k is well approximated by [18]

RRD,k = log2

(
1 +

pRMVRD,k

pRVRD,k + pRMPRD,k + ANRD,k

)
, (6.13)

where MVRD,k = |E{gTRD,k(FtxAzf)k}|2,VRD,k = Var{gTRD,k(FtxAzf)k}, MPRD,k =
K∑
j 6=k

E{|gTRD,k(FtxAzf)j |2} and ANRD,k = σ2nd
. Insight into each term is similar to the previous

case. A graphical representation of the overall rate Rk in terms of the power at the relay pR, for fixed

sources’ power pS,k = 11, is represented in figure 6.3. There, one may observe the following: there is an

optimal power at the relay that maximises the overall rate. For a low value of pR, it is the downlink that

constrains the rate, since the destinations’ received power is not sufficient to overcome the noise power

σ2nd
. Conversely, when high values are set for pR, it is the LI power that hinders the performance of the

system, as the signal-to-interference ratio at the relay becomes very low.
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Figure 6.3: Achievable rate per user when no power allocation at the sources or large-scale fading are
considered. Simulation parameters are σ2nd

= 1, K = 5 pairs, SNRR = 10 dB and εH = εt = 10−3.

Even though expressions (6.12) and (6.13) provide a theoretical insight into the achievable capacity of

the system, there are some observations that are worth of mention. On the one hand, these expressions are

only a measure of spectral efficiency (bits/s/Hz), hence do not account for possible bandwidth allocation

schemes or the usage of different constellation sizes by the various pairs, which would lead to better real

1For this analysis D1/2
SR = D

1/2
RD = I was considered. Nonetheless, if large-scale fading components were considered, one

could allocate pS,k, such that βSR,kpS,k = 1, for all k, provided power constrains are met. If this was done, conclusions would
be similar to the presented ones.
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rates. On the other hand, there might be situations where bandwidth allocation can not be performed

(e.g., hardware constraints) or where a high noise figure does not permit the increase of the constellation

size, thus the practical importance of (6.12) and (6.13) as will be seen in next section.

6.5 Optimal Power Allocation

One of the primary goals for future wireless networks is to maximise power efficiency. However, one

does not want to compromise on the individual quality of service. With this objective in mind, one wants

to find the system optimal power allocation (OPA), i.e., compute the required power transmitted by both

sources and relay, such that the desired rate for each communication pair k is guaranteed. Moreover,

peak power constraints should be satisfied and overall power consumption taken into consideration; in

other words, the system energy efficiency, defined as EE =
∑K

k=1Rk/(pR +
∑K

k=1 pS,k), should be

maximised. This can be described as the following optimisation problem:

minimise
pR,pS,1,..,pS,K

∑K

k=1
pS,k + pR,

subject to Rk ≥ R0,k, k = 1, . . . ,K;

0 ≤ pS,k ≤ pS0,k
, k = 1, . . . ,K;

0 ≤ pR ≤ pR0 ,

(6.14)

where R0,k and pS0,k
are the required rate and peak power for pair k respectively, and pR0 is the relay

station peak power.

The solution to problem (6.14) involves the computation of the channel statistics which are the output

of involved expressions due to the non-linear dependence of the optimisation variables in Frx. Note that

these statistics can be either computed numerically (via simulation) or, by exploiting the knowledge of the

channel statistics, good approximations for the closed-form expressions can be obtained. The latter was

done in [18] for the case where no LI mitigation filters are employed, that is Frx = Ftx = I. However,

when the MMSE LI suppression filters are considered, finding a closed form expression becomes a non-

trivial task (if even possible). For that reason, a numerical method will be employed, consisting of a

genie-aided receiver (all the information regarding the channel statistics is available). An algorithm to

find the optimal power allocation that maximises the energy efficiency while meeting the individual rate

requirements is proposed next.

Exploiting the fact that problem (6.14) is a linear program, one may construct a simple and com-

putationally efficient algorithm, capable of obtaining the referred OPA. Several channel realisations are

drawn to compute the corresponding channel statistics coefficients, LI mitigation filters and power vec-

tors. The procedure is done iteratively, until the optimal power vector is reached. For this purpose, one

stopping criteria is considered: a maximum number of iterations L. In addition, a threshold in the con-

secutive power vectors could also have been utilised. However, as will be seen in the numerical results,
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the convergence of the algorithm is rather fast (few iterations are needed), hence this additional stopping

criteria will not be considered. The method is summarised in algorithm 6.

Algorithm 6 - Input: Peak powers pS0,k
and pR0 ; Output: Optimal powers: pSk

and pR
1. Initialisation: Set i = 1; initialise powers pS,k,1 = pS0,k

and pR,0 = pR0 ; define L as the total number
of iterations and set Nit as the number of channel realisations per iteration.
2. Iteration i:

1) Compute channel statistics:
for n = 1 to Nit do

i) Generate GSR, GRD, HLI and compute Wzf and Azf

ii) Compute filter Frx with pS,k,i and pR,i

iii) Compute instantaneous rate coefficients for all k pairs (as in (6.12) and (6.13))
end for
2) Average the coefficients over the realisations to obtain channel statistics.
3) Solve linear program (6.14) with the coefficients found in step 2) to obtain the new pS,k,i and pR,i.
4) Set pS,k,i+1 = pS,k,i and pR,i+1 = pR,i.

3. Check:

if i = L then return pS,k,L and pS,L

else set i← i+ 1.
end if

It is worth mentioning that the design of an iterative method such as the one presented in algorithm

6 would not be possible if it was not for the fact that (6.14) is a linear program. For instance, if the

individual rate requirement was not present and a given sum spectral efficiency was to be met instead,

then the optimisation problem would become a geometric programming [18], whose complexity renders

iterative methods impractical.

However, since the genie receiver is being utilised in algorithm 6, the output powers pR and pS,k

are given a posteriori, that is, after the transmissions were done, which is not practical for real systems.

Hence, algorithm 6 is used to demonstrate that, for a given channel realisation, there is an optimal power

allocation that meets the requirements of the various users, whilst keeping energy efficiencies high. In

order to obtain a similar power allocation a priori, a closed-form expression for the rates would have

been required.

6.6 Numerical Results

In this section, the performance of the proposed filters is compared and a special emphasis on both e2e

link reliability and efficiency of the power allocation scheme is provided. All results are obtained via

Monte Carlo simulation, using uncoded MIMO. The optimisation problem is solved using cvx (a Matlab

toolbox available at [124]).
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6.6.1 System Parameters

A symmetric system with the same number of users K on both sides with one antenna each and N =

Ntx = Nrx antennas at the relay is assumed. Transmission and reception at the relay are done in the

same time-slot and frequency band, and an arbitrary processing delay d ≥ 1 is assumed such that at time

instant i: x̂[i] = f(x[i−d]), where f(·) denotes a generic function. Moreover, Frx as in (6.8) and Ftx = I

are used. The latter choice is due to the fact that one is in the presence of a distributed MIMO system

where the various K destinations are independent of each other. A filter Ftx 6= I would deteriorate the

downlink performance as the purpose of the beamforming filter Azf would become distorted. However,

if the considered system was a point-to-point transmission (e.g., relay to relay) then a different choice

for Ftx could have been done, since a relay has the decoding and channel estimation capacities that the

considered destinations are not assumed to have.

Finally and without loss of generality, σ2LI = 1 is considered. It is noteworthy that σ2LI controls the

variance of the entries in the LI channel HLI but also that the variance of the LI term
√
pRHLIt is defined

by both pR and σ2LI. Therefore, the study will be conducted with fixed σ2LI = 1 and varying pR. The SNR

at the relay is defined as SNRR =
∑K

k=1 βSR,kpS,k
σ2
nr

.

6.6.2 Allocated Power at the Relay vs. BER

An evaluation of the performance of the system in terms of BER at both relay and destinations, consider-

ing only small-scale fading, that is D1/2
SR = D

1/2
RD = I, will now be conducted. Firstly, for a given SNRR

and fixed uniform transmitted power pS,k = 1 for all k, one is interested in studying different allocated

powers at the relay pR and for an increasing number of antennas N . For comparison purposes, natural

isolation (NI) (when Frx = Ftx = I, which corresponds to ignoring the LI component) and the HD

counterpart (when t = 0 and Frx = Ftx = I) were implemented. Setting the variance in the errors to be

ε2t = ε2H = 10−3, curves of BER for different numbers of antennas and relay power pR are depicted in

figure 6.4. It can be seen that for an increasing number of antennas, the system using the MMSE filter

becomes more robust to the LI, showing a BER performance closer to the HD for higher values of power

pR than when compared with NI. More specifically, the performance gap between NI and MMSE filters

are 10 and 15 dB for N = 16 and N = 64, respectively. It would be interesting to have the BER curve

corresponding to the null-space projection pair of filters Frx and Ftx and that is left for future work.

The e2e BER performance in terms of the allocated power pR and using the same setup as before is

then studied. For this purpose, one sets the variance of the noise at the destinations σ2nd
, quantises the

received signals in (6.2), and compares them with the symbols transmitted by the sources. The results

are shown in figure 6.5. It is confirmed that for a given configuration there is an optimal choice for

the power at the relay that minimises the e2e BER. Moreover, it is concluded that a larger number of

antennas attains the minimum BER with less power. Particularly, and as was expected, when the noise

variance at the destinations increased by 10 dB, the minimum attainable BER was 10 times higher and
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the required power was about 7 dB above.
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Figure 6.4: BER performance at the relay for different numbers of antennas N , K = 5 pairs, SNRR = 8
dB and 16-QAM.

pR (dB)
-40 -30 -20 -10 0 10 20 30 40

B
E

R

10-3

10-2

10-1

100

MMSE e2e (N=64, σ
n
2 = 1)

MMSE e2e (N=64, σ
n
2 = 10)

MMSE e2e (N=16, σ
n
2 = 1)

MMSE e2e (N=16, σ
n
2 = 10)

Figure 6.5: End-to-end BER performance for different N and σ2nd
, K = 5 pairs, SNRR = 8 dB and

16-QAM.

6.6.3 Optimal Power Allocation Algorithm

Finally, the results of the proposed algorithm in section 6.5, whose objective was to find the OPA that

meets the rate constraints of each link, while minimising the overall power of the system, is here eval-
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uated. Large-scale fading effects are now taken into consideration, more precisely, βSR,k and βRD,k are

independent variables generated from a lognormal distribution with mean value m = 1 and standard

deviation σ = 6 dB, that is βSR,k, βRD,k ∼ m exp(σN (0, 1)). Note that, even though the optimisation

problem in (6.14) is a linear program2, there is no guarantee of convergence of algorithm 6. Specifically,

convergence exists if and only if at each iteration the rate outcomes are the desired ones, i.e., Rk ≥ R0,k,

and if the error in successive cost functions

∆i = ||
( K∑
k=1

pS,k,(i−1) + pR,(i−1)
)
−
( K∑
k=1

pS,k,i + pR,i
)
||2

is a decreasing function in terms of the number of iterations L. For a given channel realisation, the

required rates R0,k, channel gains βSR,k and βRD,k, allocated powers and corresponding errors ∆i+1 are

presented in table 6.1. As can be inferred, for L ≥ 3, the changes in the output powers are residual, thus

algorithm 6 is a reliable approach to obtain the optimal power allocation a posteriori.

User k R0,k βSR,k βRD,k Iter. i pS,1,i pS,2,i pS,3,i pS,4,i pR,i ∆i+1

1 1.20 0.027 0.296 1 2.0000 2.0000 2.0000 2.0000 10.0000 2.87e+02
2 1.24 0.234 0.328 2 0.2386 0.0286 0.0020 0.0305 0.7375 8.74e-03
3 1.17 3.083 0.026 3 0.1644 0.0196 0.0014 0.0210 0.7373 4.79e-07
4 1.39 0.260 0.082 4 0.1635 0.0197 0.0014 0.0210 0.7374 5.38e-08

Table 6.1: Optimal power allocation algorithm output for K = 4 pairs with different requirements in
terms of rates and affected by different large-scale fading values. The number of iterations was set to
L = 4 and the remaining parameters were as follows: N = 128, SNRR = 10 dB, εH = εt = 10−3,∑K

k=1R0,k = 5, σ2nd
= 1. The normalised peak power of both sources and relay were set as pS0,k

= 3
dB and pR0 = 10 dB.

Parameters Nit = 103 and L = 5 in algorithm 6 are, therefore, empirically defined, such that

both channel statistics and output powers in algorithm 6 are good approximations of their real value.

Additionally, the normalised peak power of the sources and relay are set as pS0,k
= 3 dB and pR0 = 10

dB, respectively. The performance of algorithm 6 is determined in terms of EE for the case where

interference effects are disregarded (OPA-NI) and when the MMSE filter is used (OPA-MMSE). This

method is also compared with the situation where an optimal uniform power allocation (OUPA) is used,

which corresponds to considering pS,k = pS, for all k, in (6.14). Figure 6.6 shows the curves of average

EE for different values of desired e2e sum-rate, defined as
∑K

k=1R0,k, where the individual required

rates R0,k are taken from a discrete uniform distribution (cf. appendix C).

As one may see in figure 6.6, for the same desired sum-rate, the EE of OPA-MMSE is improved

significantly when compared to OUPA, while guaranteeing that no link is in outage (Rk ≥ R0,k for all

k). Furthermore, since MMSE filtering effectively reduces the LI, a lower amount of energy is spent to

achieve the same sum-rate when compared with OPA-NI, an effect that becomes more preponderant in

higher rates regimes. In detail, when the number of antennas increased from 64 to 128, energy efficiency

2If feasible, a linear program guarantees the convergence to a global minimum [125].
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Figure 6.6: Energy efficiency for different power allocation schemes, filters and number of antennas.
The remaining parameters are σ2nd

= 1, K = 10 pairs and SNRR = 16 dB.

more than doubled. This is explained by the massive MIMO effect: a better LI mitigation leads to lower

required powers at both relay and destinations, thus higher energy efficiencies.

As a side note, it is important to mention that problem (6.14) is not always possible to solve. Given a

set of channel statistics and peak power constraints, there might be a situation where one or more pairs’

individual rate requirements become impossible to satisfy. Define outage as the situation where the

achievable rate Rk is below the minimum required R0,k, i.e., Rk < R0,k. When one or more pairs are in

outage, then the optimisation problem is said to be infeasible. In this case, the best alternative solution for

power allocation is application dependent. For example, users in outage can be regarded as nonexistent

until their link quality improves or, alternatively, instead of trying to meet the individual requirements, a

sum-rate approach (waterfilling-like) could have been followed, as was done in [18]. For simulations pur-

poses, whenever problem (6.14) was infeasible, the corresponding channel realisations were discarded.

6.7 Concluding Remarks

It has been demonstrated in this chapter that massive MIMO and full-duplex systems can effectively be

used together in order to simultaneously serve a reasonable number of user pairs. In particular, linear

filters to suppress interference and power allocation schemes to maximise the energy efficiency have

been designed. The results have shown that the gains increase with the number of antennas at the relay.

Note, however, that some herein made assumptions (also made in the literature) may not be coherent

with experimental results yet to be performed; mainly the ones related with the loopback interference

channel, whose modelling is of the uttermost importance.
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Chapter 7

Conclusions

As the final chapter of this document, an overview of the statements made in the previous chapters will

be carried out. In addition, some suggestions for future work will be left.

7.1 Overall Conclusions

An exponential growth in data traffic is to be expected in the next decade, hence the need for the fifth

generation of wireless networks. This will incorporate a wide range of efficient solutions capable of

fulfilling capacity demands. One of the most promising alternatives is the increase in the number of

antennas at the transceiver sides, which promises to improve current spectral efficiencies. However,

when massive MIMO systems are employed, performance of conventional detectors may become subpar

and corresponding complexities unbearable; thus the need for further research in this emerging topic.

The contributions of this thesis are three-fold.

Firstly, when NR >> NT , linear detection techniques (ZF and MMSE) were proven to attain close

to optimal diversity, while yielding low complexity. Nevertheless, these filters require the computation of

an inverse matrix, which might be cumbersome to implement. Exploiting the channel orthogonalisation

present in massive MIMO systems, the performance of the hardware-friendly Neumann series was veri-

fied, resulting in acceptable bit error rates (BER), especially when the number of considered terms in the

series was above two. In order to further lower complexity and improve throughputs, two algorithms to

update the inverse of a matrix were proposed. They consist in matrix inflation and deflation operations,

and without compromising on the performance of the system, the method is able to reduce the number

of required computations from O(N3
T ) to O(N2

T ).

Secondly, and unlike the previous case, when NT = NR, linear detection methods attain diversity

equal to one, which is undesirable. Since performing maximum likelihood detection is impractical, one

needs to find more suitable methods that yield low complexity and perform as close to optimal as possi-

ble. Taking this fact into account, parallel architecture-friendly randomised algorithms based on Gibbs

sampling have been introduced and evaluated. The stalling problem was identified, characterised and
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mitigated using two distinct alternatives. However, none of the variants attained maximum diversity in

the high SNR regime and, as a result, a triple mixed Gibbs sampling method was proposed and optimised.

The method proved to solve the problem identified in the high SNR, whilst requiring a lower number of

iterations to achieve a given BER value.

Lastly, capitalising on the benefits of large-scale arrays, a setup including both full-duplex and mas-

sive MIMO technologies has been studied. Linear filters to jointly perform detection, precoding and

loopback interference mitigation were designed and the corresponding impact in performance was as-

sessed. Particularly, a trade-off in the end-to-end BER was identified, meaning that an optimal power

allocation at the relay that minimises outage probability can be found. Additionally, it has been shown

using a linear program that an optimal power allocation scheme satisfying individual throughput require-

ments, whilst maximising energy efficiency, exists.

On the whole, it was demonstrated in this thesis that the problem arising in massive MIMO detection

can be efficiently surpassed. Given the amount of existing testbeds and prototypes, it is very likely that

these systems are actually brought out and, as a consequence, that future wireless networks’ requirements

are met. Notwithstanding the good progress made so far in the development of such systems, intense

research efforts still need to be made if this technology is to see the light of the day [126].

7.2 Future Work

This section’s intention is not to suggest new areas of possible research but rather to make the reader

aware of possible paths that can be followed in future work. Among other things, eventual follow-up

research could include:

Correlated Fading Throughout this dissertation, the widely used Rayleigh channel has been consid-

ered. Even though this assumption proves to be a good approximation of reality in massive MIMO

systems, other, more suitable channel models can be applied and corresponding impact in perfor-

mance assessed.

Imperfect Channel State Information Apart from chapter 6, perfect channel state information at the

receiver was assumed. Similarly to the previous item, it would be important to study and im-

plement relevant channel estimation algorithms and ensuing influence. It is worth mentioning,

however, that channel acquisition methods based on Gibbs sampling exist and, hence, would serve

as a suitable extension to this work.

Coded transmissions The herein studied detectors output hard-decisions. However, if coded transmis-

sions are considered instead, soft-outputs are preferable, as channel decoders attain better perfor-

mance when these are utilised. Therefore, it would be interesting to see the extension of the studied

randomised algorithm to soft-outputs, as well as an evaluation of the resilience of the Neumann

series approximation when error correcting codes are employed.
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Appendix

Appendix A - Normalisation Factor αzf

The objective is to design αzf such that E{tHt} = 1. Using its definition t = αzfG̃
H
RD(G̃RDG̃

H
RD)−1x̂ =

αzfPx̂, and the fact that x̂ is zero-mean with covariance matrix C = E{x̂x̂H} = I, it follows that (from

[127])

E{tHt} = α2
zfE{(Px̂)H(Px̂)} = α2

zftr{PCPH} = 1. (1)

Exploiting C = I, it follows that tr{PCPH} is given by

tr{(G̃RDG̃
H
RD)−1} = tr{(DRDH̃RDH̃

H
RD)−1}. (2)

Now noting that W = H̃RDH̃
H
RD is a central Wishart matrix, where the columns of H̃RD ∈ CK×Ntx are

zero-mean complex Gaussian vectors with covariance matrix (1 + ε2H)I, it follows from [128, Lemma

2.10] that

E{(tr{DRDW})−1} =

∑K
k=1

(
βRD,k(1 + ε2H)

)−1
Ntx −K

. (3)

Merging the results in (1), (2) and (3), the normalisation factor αzf in (6.6) follows.

Appendix B - Ftx and Frx Expressions

According to [129], the error covariance matrix Q of the relay input signal is given by E((GSRx −

r̂)(GSRx− r̂)H), yielding

Q =(I− Frx)G̃SRDpSG̃
H
SR(I− Frx)H

+ pRFrxH̃LIRtH̃
H
LIF

H
rx + FrxRnrF

H
rx ,

(4)

where Rt = Rt̃ + REt = E{t̃t̃H} + E{EtEHt } = FtxAzfRx̂A
H
zf F

H
tx + ε2tI. Using the fact that the

function f = tr{ZA0Z
HA1} has derivative given by d

dZ∗ f = A1ZA0 [130, Table 4], one may easily
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find ∂
∂F∗tx

tr{Q} = 0 and ∂
∂F∗rx

tr{Q} = 0. Fixing Ftx comes

∂

∂F∗rx
tr{Q} =Frx(pRH̃LIRtH̃

H
LI + Rnr)

− (I− Frx)G̃SRDpSG̃
H
SR = 0,

(5)

which when solved with respect to Frx gives (6.8). Fixing Frx leads to

∂

∂F∗tx
tr{Q} =DpSFrxH̃LI(pRF

H
rxH̃

H
LIFtxAzfRx̂A

H
zf )

=DpSFrxH̃LI(FrxH̃LIFtx)AzfRx̂A
H
zf = 0,

(6)

whose solution is given by (6.7).

Appendix C - Uniform Discrete Distribution

The objective is to find different values for R0,k, for all k, such that a desired sum-rate S is satisfied,

i.e., S =
∑K

k=1R0,k. In this work, a very simple model for R0,k will be considered. In future work,

more advanced and realistic values and model can be integrated. Denote a given mean value for the rates

M = S/K and set a maximum deviation p, i.e., how far are the individual rates R0,k allowed to be from

M . The individual rates are computed as follows

R̃0,k = M(sk + 1), (7)

where sk ∼ dpU [0, 1]e. The ceiling function is used to discretise the rates. Finally, in order to satisfy the

condition S =
∑K

k=1R0,k, the following normalisation is applied

R0,k =
S∑K

k=1 R̃0,k

R̃0,k. (8)

The results for R0,k presented in table 6.1 were obtained using S = 5 and p = 10%.
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