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Abstract — This paper explores the feasible limits for 
complexity reduction of a very simple front-end block for 
the calculus of phase transition metrics on a continuous 
phase modulation (CPM) receiver. A quasi-optimum 
receiver of very low complexity is attained by splitting the 
function of the optimum receiver bank filters in two blocks: 
calculus of projections coefficients on a low dimensional 
space of Walsh functions followed by simple matrix 
calculus. A sequence detection algorithm follows this block. 
The presented approach enables the reduction of the 
matched filters or correlators to just two integrators, 
regardless of the CPM scheme. Research on the reduction 
limits of the space dimension is conducted using 
catastrophic M-ary CPM schemes, taking advantage of their 
very low number of phase states. Performance of 1REC 
h=1/2 16-ary scheme is for the fist time presented. A rule is 
defined concerning the number of Walsh functions that 
must be used. That outcome proves to be valid for two CPM 
schemes of high power gain. The receiver is tested under 
additive white gaussian noise (AWGN). 

I. INTRODUCTION 

Continuous phase modulation (CPM) signals have 
constant amplitude and so they are a good solution for 
systems requiring insensitivity to non-linear amplitude 
amplification. Their phase continuity allows good 
spectral performance and implies a code gain due to the 
inherent memory effect. These properties have motivated 
the common use of GMSK (gaussian minimum shift 
keying), which is a simple member of the CPM family, in 
widespread use systems such as GSM/DCS, PCS, DECT, 
CT2 and Bluetooth. The use of others CPM schemes 
more spectrally efficient and better power efficient was 
restrained owing to excessive detection complexity [1]. 
The number of analogue matched filters (or correlators) 
needed is often unbearable for practical implementation. 
The number of phase states to be detected can very large 
as well. Conception of simple receivers is nowadays a 
main concern within CPM research. This paper shows 
that Walsh functions can generate a space where it is 
possible to find signals close to the original CPM signals. 
Digital signal processing (DSP) allows fast matrix 
calculus using both received and stored signals. 

II. CPM FORMATTING AND PERFORMANCE 

Every CPM signals can be expressed in the form: 
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The carrier frequency is fc, where c=2 fc, 0 is the 
arbitrary initial phase and Es is the energy per symbol, 
related with the bit energy by Es=log2(M) Eb. Channel 
symbols are i { 1, 3, , (M-1)}, forming the M-ary 
sequence . Each symbol i carries log2(M) bits as a 
result of a natural mapping of the information bits stream 

. The information carried by NS channel symbols is 
keyed in signal’s phase: 
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A constant modulation index, h=p/q, is considered, 
where p and q are integers with no common factors. (h is 
rational in order to have a finite number of phase states.) 
Phase transition pulse shape, q(t), affects phase 
transitions shape during L symbols. However, its effect 
remains until the end of the transmitted sequence. q(t) is 
defined by the frequency pulse g(t):
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dgtq )()( . The 
normalisation q(t) = 

0
)( dg  = 1/2 is applied so that the 

maximum phase transition during a symbol time, Ts, is 
h (M-1) . Different frequency pulses define different 
CPM families. The most common are: LREC, LRC (L is 
the variable mentioned above) and GMSK [1,2]. LREC is 
defined by g(t)=rect[t/(LTs)]/2, where rect(t)=1 for 

1/2<|t|<1/2 and zero elsewhere. Schemes with 1REC 
pulses are also known as CPFSK (continuous phase 
frequency shift keying). A smother g(t) such the named 
LRC (raised cosine pulse shaping) usually conducts to 
narrower bandwidth than the ones given by LREC pulses. 

In order to evaluate CPM power performance one uses 
the minimum normalised squared euclidean distance
(MNSED) between two signals transporting sequences 
and :
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Bit error rate (BER) is given by (e.g. [1]) 
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C is a constant 1 for most schemes (and 2 for MSK). 
Q(x) is the area under the unit variance gaussian 
distribution in [x, ]. Power efficiency comparisons can 
be made from (4) merely by 2

min
d  knowledge or 

converting it to a gain relative to MSK, being G
=10 log10( 22

mind ) [dB]. 
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Bandwidth is usually given in terms of B Tb where B  is 
the bandwidth that enclosures % of all transmitted 
power. Tb= Ts/log(M) is the bit interval; bit rate is 
Rb=1/Tb. For MSK B99.0Tb=1.2. Spectrum efficiency is 
thereby =1/(B Tb)=Rb/B . By reducing h phase 
transitions get smother, tightening bandwidth, but that 
also forces MNSED to decrease due to the greater 
similitude among transitions during each Ts interval. A 
greater M enhances simultaneously spectrum and power 
behaviour at a cost of boost in complexity. 

III. OPTIMUM DETECTION 

To obtain metrics for each one of the  phase 
transitions the optimum CPM receiver requires 
2 matched filters (or equivalent correlators), one for 
each branch I and Q. Metrics have to be calculated for all 
transitions ,b { , , , } and all 

Q,b { Q, Q, Q, }. Considering n(t) additive white 
gaussian noise (AWGN), after baseband conversion one 
gets the y(t)=s(t, )+n(t). I and Q metrics for b= 1, 2, , ,
are then 
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In more detail, for the same b, the branch metrics are 
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Finally, having all the metrics, the problem is solved by 
a maximum likelihood sequence detector (MLSD). The 
detection complexity of CPM schemes is measured in 
terms of  and the total number of states, being that 
number S =q M L 1, for even p and S=2q M L 1 for odd p.
In the case of full response systems (L=1), S corresponds 
to the number of physical phase states. The number of 
phase transitions is therefore =S M. For this reason the 
number of 2 filters becomes intolerable for high M
and/or weak h.

As a result, MLSD must search for the sequence 
having maximum cumulative metric given by the inner 
product 

i(b) = )(),,( tty bi . (7) 

IV. PROJECTIONS AND METRIC CALCULUS 

Metrics are calculated on a F-dimensional Walsh 
space, generated by F Walsh functions [3] of order k
denoted as wF,n(t); n=1, 2, 3, ,F=2k; each one with F=2k

symbols, being them wF,n[j], j=0, 1, , F=2k, for k :
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with n=0, 1, , F-1=2u 1, u , and rect(t)=1 for 
<|t|<1/2 and zero elsewhere. Symbols wF,n[j] { 1, +1} 
and are defined by a recursive method that builds Walsh-
Hadamard matrixes [3]. Applying (7), it can be proved 
that the bth metric in the Walsh space when applying a 
MLSD criterion is given by 
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for b= 1, 2, , . Metric calculus is made merely using 
the projection of the received baseband signal y(t) into the 
Walsh space. Those projections coefficients are 
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From (9), the transition metrics are 
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where ci,n are the projection coefficients of the transition 
during symbol interval i , as given by (10), and cb,n are 
projection coefficients of the bth transition belonging to 
the set of  possible ones. Using the projection vectors 
and (7), (11) becomes 
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These coefficients can be easily determined by: 
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Moreover, each integrator does not need to be dumped 
at every Ts/F sub-interval. By sampling the continuous 
integration it is possible do know the partial integration 
values making 
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The calculation on (14) only requires two integrators, a 
sampling procedure and a calculus unit, independently of 
the CPM scheme. 

The vector of  metrics is the column vector 

i =
T22222 )()1()()2()1( iiiii dbdbddd . (15) 

The received ith transition has a description on the 
Walsh space given by the projection vector 

          Finiiii cccc ,,2,1,c    ,   i=1, 2, , Ns. (16) 

Each possible transitions is stored on similar vectors: 
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Coefficients, cb,n, can be determined and memorized in 
advance. Vectors cb can form matrix C of dimensions 
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Having C, the incremental distance vector (metrics) is 
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conducting to the column vector containing the  metrics. 

V. TEST SCHEMES 

In order to research the behaviour of the receiver we 
have used the h=1/2 full response M-ary schemes 
presented in Table 1 (MSK on the first line), taking 
advantage of their very low number of states (S=4).
Those simple schemes happen to be catastrophic, that is, 
their MNSED has a local mean for the used h=1/2, being 
the real 2

mind very distant from its upper bound [2]. That 
concerns only to the MLSD block and should not 
influence the research on the metric calculus using the 
given CPM space approximation. 

From [2,4,5] we point out two optimum full response 
mono-h CPM schemes also characterized in Table 1. 

Table 1: Characteristics of 1REC CPM schemes  

h M S B99.0Tb

2

min
d G [dB] 2

2 4 1.20 2.0 0 8 16 

4 4 1.30 2.0 0 16 32 

8 4 1.55 3.0 1.76 32 64 
1/2 

16 4 (a) (a) (a) 64 128 

4 40 1.18 3.60 2.56 160 320 
9/20 

8 40 1.40 5.40 4.31 320 640 

Table 1 positions where “(a)” is found are not 
available; they are obtained in Section VI. The selected 
schemes of h=0.45=9/20 are the best 4-ary and 8-ary 
CPFSK schemes in terms of power gains within the 
region of useful spectral efficiencies which preserve an 
acceptable number of states (S=40). These two schemes 
of h=0.45 share another interesting feature: they are 
examples of rare schemes with a MNSED coincident with 
their upper bound curves (determined by [1,2]). 

VI. RESULTS 

Results for performance in terms of bit error rate 
(BER) for detection under AWGN are depicted in Figures 
1 and 2. 
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Figure 1: Effect of the Walsh space dimension for h=1/2, 1REC 
schemes. 
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Figure 2: Effect of the Walsh space dimension for optimum 

h=9/20, 1REC schemes. 

Results for the optimum reception of 1REC, h=1/2, 
M=16 plotted in Figure 4 (a) are achieved for the fist time 
as a result of the presented research: a gain of 3 dB can 
be detected, corresponding to 42

min
d  (half the bound 

value for 2

min
d  calculated by [1]). 

For better power gain assessment all figures include 
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both BER curve for ideal antipodal modulation ( 22

min
d )

and BER curve associated to 7.12

min
d , proposed by [6] 

to describe real MSK. It can be seen that that an 
increasing number of Walsh functions, F, is required 
when a greater M scheme is considered. For all tested 
schemes a number of Walsh functions equal to M (i.e. 
F=M) assures near optimum performance. For F>M no 
significant gains were detected. A decreasing value of F
implies an abrupt loss. 

This method was firstly proposed by [7] for schemes 
3RC (partial response scheme) with M=2 and M=4 and a 
varying h. It was also seen there that power penalty 
decreases for small modulations indexes (which are the 
interesting ones in terms of bandwidth). This fact is 
coherent with the greater smoothness on the phase 
transitions of low h schemes (less abrupt signals) whish 
bring CPM signals closer to the Walsh space. Those 
results from [7] also show that for those schemes even 
when F=2 the power penalty is always <0.5 dB. For F=4
and for F=8 the loss is always <0.4 dB and <0.1 dB 
respectively for schemes having h<0.7. These impressive 
results were also verified on other partial response 
quaternary schemes with GMSK pulses with L=5 and 
L=6, and h=1/4, 1/5 and 1/6 [8]. 

From the attained results it can be said that the rule 
F M, found out for the simple but catastrophic schemes, 
can be extrapolated to the interesting schemes of h=9/20, 
presented in section V, which were also tested under 
AWGN. More, simulations for the optimum receiver 
confirms the expected gains showed in Table 1 for these 
h=9/20 schemes: G 2.6 dB for M=4 and G 4.3 dB for 
M=8. When applying the Walsh space to the optimum 
h=9/20 schemes one gets for M=8 with F=8 a BER curve 
as close as 0.2 dB from the optimum detection curve, as 
seen in Figure 2 (a). For M=4 with F=4 the power loss is 
less than 0.1 dB  Figure 2 (b). Also notice that h=0.45 
assures smother transitions than h=0.5. 

VII. CONCLUSIONS 

The first results of [7] where extended in this paper and 
some patterns were found to predict the error robusteness 
for schemes using this low complexity front-end 
computing CPM metrics based on a Walsh functions. The 
good approximation of CPM signals by such simple 
functions is justified by the fact of CPM signals being 
inherently narrowband signals. 

By assessing bit error rate performance with different 
Walsh space dimensions it was found that similar patterns 
occur for different M-ary schemes. A decrease on the 
order of the used set of Walsh functions degrades 
performance, being this effect more important for 
schemes with a greater M.

It was established that near-optimum performance is 
attained when using a Walsh space dimension as small as 
M. The use of a greater number of functions permits little 
performance improvement. The rule is valid at least for 
schemes with h 0.5 (with are the most interesting ones in 
terms of bandwidth) and M 16 (the feasible ones in terms 
of complexity for MLSD) and proved to remain valid 

when applied to full response optimum gain schemes 
(equal to local power upper bound). 

As a particular a case, it was showed that MSK can be 
detectable in a quasi-optimum manner just sampling  
twice a continuous integrator during each symbol 
interval.

The metric calculus made with this simple technique 
can still be applied when using symmetry relations to 
derive metrics among different quadrants [9]. Its joint 
application with both [9] and the use of the M-algorithm 
ruled by the results in [10], enabled the definition of a 
very low quasi-optimum receiver analysed in [11,12] 
using the optimum schemes selected and tested here. 
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