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Abstract  — The impact of the M-algorithm on continuous 
phase modulation (CPM) detection is analyzed when 
replacing the common Viterbi algorithm (VA) on the 
maximum likelihood sequence detection (MLSD) block. The 
algorithm is presented as a reduced complexity sequence 
detection algorithm in which not all transitions are 
propagated, being only retained a small subset of paths. A 
rule is found concerning the lower limit of the mandatory 
number of paths to retain, using simulations with additive 
white gaussian noise (AWGN) when detecting simple 
catastrophic schemes and two optimum gain schemes, in the 
sense they are two of the rare coincident with their 
respective minimum Euclidean upper bounds. The M-
algorithm proves near optimum performance for very low 
ratios of number of traced states per total number of states. 

I. INTRODUCTION 

Continuous phase modulation (CPM) signals have 
constant amplitude, so their insensitivity to non-linear 
amplitude amplification makes them useful in systems 
penalised by that problem. Phase continuity allows good 
spectral performance and implies a code gain due to the 
inherent memory effect. These properties have motivated 
the widespread use of GMSK (gaussian minimum shift 
keying). The implementation of others CPM schemes 
more spectrally and power efficient was restrained owing 
to excessive detection complexity. 

The problem of CPM detection poses two main 
problems: how to obtain all the transitions metrics and 
how to search the most probable sequence of states. The 
optimum detector usually demands a very large bank of 
matched filters to obtain all phase transitions metrics and. 
Moreover, the number of phase states on the Markov 
chain that must be detected afterwards can also be very 
large, even without channel coding [1]. This paper 
addresses the later problem. 

II. CPM FORMATTING AND PERFORMANCE 

Every CPM signals can be expressed in the form: 
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The carrier frequency is fc, where c=2 fc, 0 is the 
arbitrary initial phase and Es is the energy per symbol, 
related with the bit energy by Es=log2(M) Eb. Channel 
symbols are i { 1, 3, , (M-1)}, forming the M-ary 
sequence . Each symbol i carries log2(M) bits as a result 
of a natural mapping of the information bits stream .

The information carried by NS channel symbols is keyed 
in signal’s phase: 
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A constant modulation index, h=p/q, is considered, 
where p and q are integers with no common factors. (h is 
rational in order to have a finite number of phase states.) 
Phase transition pulse shape, q(t), affects phase 
transitions shape during L symbols. However, its effect 
remains until the end of the transmitted sequence. q(t) is 

defined by the frequency pulse g(t):
t
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The normalisation q(t) = 
0

)( dg  = 1/2 is applied so 

that the maximum phase transition during a symbol time, 
Ts, is h (M-1) . Different frequency pulses define 
different CPM families. The most common are: LREC, 
LRC (L is the variable mentioned above) and GMSK 
[1,2]. LREC is defined by g(t)=rect[t/(LTs)]/2, where 
rect(t)=1 for 1/2<|t|<1/2 and zero elsewhere. Schemes 
with 1REC pulses are also known as CPFSK (continuous 
phase frequency shift keying). A smother g(t) can 
improve the spectral efficiency of schemes with LREC 
pulses, an example is the referred LRC which has a raised 
cosine pulse shaping. 

In order to evaluate CPM power performance one uses 
the minimum normalised squared euclidean distance
(MNSED) between two signals transporting sequences 
and :

0

2

:,

2

min
),(),(min)2(1),( dttstsEd

s
. (3) 

Bit error rate (BER) is given by (e.g. [1]) 
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C is a constant 1 for most schemes (and 2 for MSK). 
Q(x) is the area under the unit variance gaussian 
distribution in [x, ]. Power efficiency comparisons can 
be made from (4) merely by 2

min
d  knowledge or 

converting it to a gain relative to MSK, being G
=10 log10( 22

mind ) [dB]. 
Bandwidth is usually given in terms of B Tb where B  is 

the bandwidth that enclosures % of all transmitted 
power. Tb= Ts/log(M) is the bit interval; bit rate is 
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Rb=1/Tb. For MSK B99.0Tb=1.2. Spectrum efficiency is 
thereby =1/(B Tb)=Rb/B . By reducing h phase 
transitions get smother, tightening bandwidth, but that 
also forces MNSED to decrease due to the greater 
similitude among transitions during each Ts interval. A 
greater M enhances simultaneously spectrum and power 
behaviour at a cost of boost in complexity. 

III. CONSTRAINED COMPLEXITY SEQUENCE 
DETECTION 

The Markov property of CPM allows its description by 
a trellis with a certain number of states. To obtain all 
transition metrics the optimum CPM receiver requires 
2 matched filters (or equivalent correlators). The 
optimum receiver is depicted in Figure 1. 
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Figure 1: Optimum receiver with AWGN. 

Metrics have to be calculated for all in phase and 
quadrature transitions, respectively ,b

{ , , , } and Q,b  { Q, Q, Q, }.
Considering AWGN, n(t), with bilateral power spectral 
density N0/2 W/Hz, after baseband conversion one gets 
the signal y(t)=s(t, )+n(t). Metrics for b= 1, 2, , , are 
given by 
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In more detail, for the same b, the branch metrics are 
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Finally, having all the metrics, the problem is solved by 
a maximum likelihood sequence detector (MLSD). The 
detection complexity of CPM schemes is measured in 
terms of  and the total number of states, being that 
number S =q M L 1, for even p and S=2q M L 1 for odd p.
On full response systems (L=1), S corresponds to the 
number of physical phase states (Figures 2 and 3). The 
number of phase transitions is therefore =S M. For this 
reason the number of 2 filters becomes intolerable for 
high M and/or weak h.

Each transition has the incremental metric 
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As a result, MLSD must search for the sequence 
having maximum cumulative metric given by the inner 
product 
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The MLSD algorithm must so search for the sequence 
having maximum metric and not the minimum. By 
defining the detection complexity as the number of paths 
being traced in the trellis, the complexity of the VA is 
equal to S, which is typically large. 
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Figure 2: Physical phase states for full response CPM. 
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Figure 3: Trellis for M-ary CPM. 

Having all the metrics the problem remains on search 
of the most probable sequence of phase transitions. For 
that purpose the Viterbi Algorithm (VA) is widely used. 
It performs maximum likelihood sequence detection 
(MLSD) but its complexity can limit its use. The problem 
of performing MLSD under given complexity constrain 
results in a family of optimal detectors is presented in [3]. 
Complexity constrained MLSD can be described by the 
search algorithm, which separates the S states into C
classes. Hence, every class contains S/C states. Within 
each class some paths are discarded at each symbol 
decision. Only those paths closer to the received signal in 
the Euclidean distance sense are to be retained. B is the 
number of paths chosen to remain in competition inside 
each class. This algorithm and its variables are denoted 
by SA(B, C ). One can recognize the VA as being the 
particular case SA(1, S ) – Figure 4. One advantage of 
Viterbi detection over sequential detection is that the 
number of states is constant on each symbol time, against 
a variable number on sequential decoding [4]. The entire 
SA(B,C) family performs MLSD over the AWGN 
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channel in the sense that increasing SNR conducts to 
arbitrary low error probability of choosing a wrong 
sequence, if no inter-symbol interference (ISI) exists [3]. 

Whenever one search is conducted inside partitions the 
algorithm is usually named reduced state sequence 
detection (RSSD). RSSD can be denoted by SA(1, C). At 
the beginning of each interval MB transitions emerge, but 
only Np=BC paths are stored as initial states of the next 
iteration and Np is always <S. So, SA(B=Np, 1) conducts 
to the best performance since it is the least constrained 
situation. A lot of attention has been devoted recently to 
this sub-family of algorithms (e.g. [3, 4] and references 
therein).

The M-algorithm is a particular case of this RSSD 
family, corresponding to the case SA(B, 1), being M=B
(notice the difference for M, the M-arity). This is the 
algorithm evaluated on this paper due to the great amount 
of simplicity it can bring to CPM detection and for 
belonging to the family of best performance (Figure 4). 

SA(B,1) is the optimum algorithm: despite having the 
same performance of SA(S,1) (i.e. the VA), SA(B,1) 
minimizes the probability of a first error event since the 
best metric paths are always propagated and not one for 
each state as in the VA, possibly losing some paths with a 
larger metric. (In general the number of retained paths is 
not limited to S; but can be has large as BC.)

In the limit of B=1 one gets decision feedback (DF), 
i.e., SA(1, 1); only one path is traced for the sequence 
detection. It corresponds to the case of less computational 
weight but the probability of losing the correct path is the 
highest one. It can only be used during periods when the 
channel is known to have reduced noise on a strategy of a 
variable M-algorithm, being M controlled by noise power 
estimation. 

Class CC

Class C2

Class C1

S classes

a) SA (B=2,C) b) SA(B=1,S) / VA

Single
class

c) SA (B=5,C=1) / M-alg.

Figure 4: The M-algorithm as a sub-class of the SA(B,C).

IV. TEST SCHEMES 

From [2,6,7] it is possible to present the power and 
spectrum characteristics of some schemes with M=2, 4 
and 8 in Table 1 (MSK on the first line) and also for two 
optimum full response mono-h CPM schemes. Those 
schemes of h=0.45=9/20 are the best 4-ary and 8-ary 
CPFSK schemes in terms of power gains within the 
region of useful spectrum efficiencies holding an 
acceptable number of states (S=40). 

Values for positions of Table 1 where “(a)” is found 
are not available in literature and can be found in Section 
V.

Table 1: Characteristics of 1REC CPM schemes  

h M S B99.0Tb

2

min
d G [dB] 2

2 4 1.20 2.0 0 8 16 

4 4 1.30 2.0 0 16 32 

8 4 1.55 3.0 1.76 32 64 
1/2 

16 4 (a) (a) (a) 64 128 

4 40 1.18 3.60 2.56 160 320 
9/20 

8 40 1.40 5.40 4.31 320 640 

In order to research the behaviour of the receiver 
operating with the Walsh space projections as a function 
M we have used the h=1/2 full response M-ary schemes 
presented in Table 1, taking advantage of their very low 
number of states (S=4). Those simple schemes happen to 
be catastrophic, that is, their MNSED has a local mean 
for the used h=1/2, being the real 2

mind very distant from 
its upper bound [1,2]. This references also contain an 
evolution of MNSED obtained by simulation as a 
function of the modulation index h. Analysing the 
interval for h [0.1 0.5] (which corresponds to the 
interesting schemes in terms of bandwidth - smother 
transitions) one finds h=0.33 and h=0.5 corresponding to 
catastrophic schemes for both for M=4 and for M=8 (as 
for M=2, i.e, MSK). Apart h=0.33, in that interval the 
curves of upper bound and simulated MNSED are 
coincident rising very fast until 2

mind =3.6 at h=0.45=9/20. 
Then MNSED drops to 2

mind =2 at h=1/2, as for MSK. For 
M=8 the study of the same authors shows rather irregular 
behaviour in terms of MNSED for h [0.1 , 0.5]. Four 
catastrophic schemes are found, being one at h=1/2, just 
as for M=2 and M=4. Moreover, only two different h
conduct to optimal MNSED, i.e., MNSED coincident 
with its upper bound. The selected h=9/20 schemes are 
optimum in the sense that few schemes have a minimum 
Euclidean distance equal the respective upper bound. 

V. RESULTS 

Performance is determined in terms of bit error rate 
(BER) for detection by means of Monte Carlo simulation 
under AWGN. (We use the letter B of the general 
SA(B,C) and not the one on the algorithms name.) For 
better power gain assessment all figures include the BER 
curve for ideal antipodal modulation ( 22

mind ) and the 
BER curve associated to 7.12

mind , proposed by [8] to 
describe real MSK power performance. 

For the h=1/2 schemes (Figure 5) it is found a similar 
pattern for bit error rate performance as a function of the 
number of states to propagate on the trellis, B. An 
increase on the modulation M-arity, requires a rising on 
that path memory number. Is can be seen that for all 
tested schemes B=M assures near optimum performance. 
For B>M no significant gains are detected. Inversely, 
Further decreasing B implies an abrupt decay on 
performance, being this effect more important for high M
schemes. 

From Figure 6 one can conclude that the rule B M,
found out for the simple but catastrophic schemes, can be 
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extrapolated to the interesting h=9/20 schemes. Both 
h=9/20 M=8 and M=4 schemes (having S=40) can be 
detected using B=5, keeping a BER performance as close 
as 0.2 dB from the optimum detection curve. In addition, 
the curves for the optimum receivers confirm the 
expected gains showed in Table 1 for these h=9/20 
schemes: 2.6 dB for M=4 and 4.3 dB for M=8. 
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Figure 5: Detection of 1REC, h=1/2, for varying B, with AWGN. 
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Figure 6: Detection of 1REC, h=9/20, for varying B.

The results found in this paper are settled upon the 
theoretical study of Aulin [3] for general MLSD. The 
authors of [9] cite unpublished results by this author 
congruent with the ones encountered here. 

VI. CONCLUSION 

It has been found that high gain CPM schemes can be 
quasi-optimally detected when propagating on its trellis a 
number of paths as small as the modulation M-arity. 
Thus, the amount of complexity on the MLSD block for 
both selected optimum CPM schemes could be reduced 
by a factor of 10. 

The results provided by this paper permitted to 
combine the M-algorithm with other complexity 
reduction techniques for CPM such as [10,11] in order to 
achieve a quasi-optimum very low complexity CPM 
receiver [12,13]. 
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