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Abstract— This paper proposes a technique to reduce the 

complexity involved in the maximum likelihood detection of 

multiple input multiple output (MIMO) spatial multiplexing 

systems. Both the received lattice and the components of the 

received signal are quantized, corresponding to a mapping into a 

multidimensional space divided into hypercubes. In the new 

space the maximum likelihood detection criterion can be applied 

making use of a small look-up table storing all the exact possible 

distance components in each dimension of the quantized space. 

The number of pre-stored elements can be as small as the 

number of quantization levels per dimension. This procedure 

eliminates the multiplications involved in the calculation of the 

squared Euclidean distances. The impact of the quantization 

error is assessed by means of simulations over fast flat fading 

channels. Near optimum performance is achieved with only 5 bits 

representing each dimension of the received signal. 

I. INTRODUCTION 

Multiple input multiple output (MIMO) systems have been 

at the centre of the research in wireless communications 

during the last decade [1, 2]. MIMO systems make use of the 

existence of different channels between the transmitter and the 

receiver due to the existence of multipath propagation 

between the two parties. The systems can be designed in order 

to exploit that diversity either to maximize the diversity of the 

link (space-time coding systems) or to maximize the overall 

bit throughput (spatial multiplexing systems). Research into 

the tradeoffs of the two frameworks is still being researched 

and recently a scheme which considers switching between the 

two frameworks was proposed [3]. Spatial multiplexing 

allows raising considerably the bit rate of wireless links; 

however this comes at the expense of an enormous increase in 

the complexity of optimum detection as the number 

transmitting antennas is incremented and modulations with 

increasing spectral efficiency are used. For the case of equally 

probable symbols the maximum a posterior (MAP) detection 

strategy corresponded to the maximum likelihood (ML) 

criterion, leading to a number of comparisons that grows 

exponentially with the number of transmission antennas. For 

this reason, research on sub-optimal receivers has always been 

central to spatial multiplexing, leading to both linear and non-

linear receivers [2, 4] which encompass a range of different 

power performances. The receivers using zero-forcing (ZF), 

and minimum mean square error (MMSE) criteria constitute 

the linear receivers whilst the most used example of non-

linear receivers is the vertical Bell Laboratories layered space-

time receiver, also called ordered successive interference 

cancellation (OSIC) receiver [4, 5]. The sub-optimality of all 

these receivers does not allow them to fully extract the 

diversity available, i.e., the curves representing the number of 

errors against the signal to noise ratio (SNR) are less steep. 

The call for near ML performance originated research into 

low complexity exact methods where sphere decoding [4], and 

lattice reduction [5, 6] are the most prominent ones. The later 

retains the diversity of ML, exhibiting performance curves 

parallel to those of ML (corresponding to a power penalty) at 

only a fraction of the computational cost. Attempts to simplify 

the brute force approach undertaken by ML receivers are 

always limited by the number comparisons needed, and 

assessments of the complexity of the algorithms are chiefly 

made by the total number of multiplications required [7]. 

This paper presents a technique to simplify the calculation 

of the squared Euclidean distances required in ML detection. 

The proposal is inspired by similar problems in computer 

graphics and image processing where approximations for the 

Euclidean distance are used [8, 9] (not for the squared 

Euclidean distances though). As is the case of the 

approximations that modify the forward-backward MAP 

algorithm into a max-log MAP algorithm [10-Sec.4.3]. The 

application of completely multiplication-free Euclidean 

distances have been used in MIMO with minimum penalty 

[11], however in that case the approximation occurs in the 

bidimensional space of the transmitted constellation. Instead, 

this paper proposes the simplification of the evaluation of the 

Euclidean distances in the received multidimensional space 

where ML search is undertaken. A look-up table technique is 

used in order to obtain the components of the squared 

Euclidean distances [12]. 

II. TRADITIONAL RECEIVERS 

A MIMO system under flat fading can be represented in a 

complex baseband model as 

 nHxy += , (1) 

where [ ]T

nT
xxxx ,,, 21 …= , that is, each component is 

transmitted from each one of the nT transmitter antennas, 

[ ]T

nR
yyyy ,,, 21 …= , where each component corresponds to 

the signal in each one of the nR receiver antennas and the noise 

vector [ ]T

nR
nnnn ,,, 21 …= is composed of complex Gaussian 
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random variables with zero mean and variance 2

nσ =1 (0.5 in 

both real and imaginary parts). The components in x are taken 

from a set ΞC of symbols belonging to an M-ary complex 

constellation with real and imaginary parts taken from the set 

ΞR. The channel matrix H for this nR×nT system is 
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where all the elements are i.i.d complex circularly symmetric 

Gaussian random variables with zero mean and unit variance 

(i.e., with variance 0.5 in both the real and imaginary 

components). This model can be converted into one with the 

double number of dimensions where all the elements are real 

numbers by stacking the real and imaginary parts of x and y 

and constructing a new equivalent channel matrix 
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where the symbols ℜ and ℑ indicate the real and imaginary 

components respectively. Equation (3) can be written as 

 rrrr nxHy += . (4) 

Thus [ ]T

nrrrr T2,2,1, ,,, xxxx …= , [ ]T

nrrrr R2,2,1, ,,, yyyy …= , 

and [ ] .,,, 2,2,1,

T

nrrrr R
nnnn …=  Also, Hr doubles the 

dimensions with respect to H. The problem of detecting the 

transmitted symbols is optimally solved by the maximum 

likelihood procedure based in squared Euclidean distances, i.e., 

 { }2

)( 2
minˆ

rrrMLr
Tn

r

xHyx
Rx

−=
Ξ∈

. (5) 

This implies the measurement and comparison of 
Tn

M squared Euclidian distances per component of the 

Rn2
R space or per component of the complex space Rn

C in (1). 

Hence, the search increases exponentially with the number of 

transmission antennas for a given modulation. 

The simplest linear receiver corresponds to a ZF criterion, 

i.e., an inversion of the channel matrix. In the general case, as 

the channel matrix H is not necessarily square (corresponding 

to nT=nR), then the Moore-Penrose pseudo-inverse of H is 

used, which is given by ( ) HH
HHHH

1−+ = where (⋅)
H
 denotes 

the Hermitian transposition. In this case the “filtering” matrix 

 += HWZF . (6) 

This procedure induces noise enhancement in the 

constellation space where the decisions of constellation 

symbols are to be made. The MMSE receiver takes the noise 

into account, resulting in the following “filtering” matrix [2] 

 H

n

H

MMSE TSNR
HIHHW

1
1

−


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
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The OSIC-ZF receiver uses (6) in an initial iteration. The 

component of yr with the smallest noise amplification is 

selected and detected (by inspection of the rows of WZF [5]. 

The next step is to remodulate that symbol and subtract its 

effect from the original received yr. This procedure is repeated 

for the new signal, originating the detection of a second 

component of y, and is repeated until all components have 

been detected. The OSIC-MMSE receiver operates similarly 

by applying (7) instead of (6). The complexity of OSIC is only 

polynomial with nT [7] but the fact that an erroneous decision 

in a component cascades the error throughout the components 

to be subsequently detected explains the fact that OSIC is not 

able to exploit entirely the diversity available in the system. 

III. DETECTION IN QUANTIZED SPACES 

The proposed receiver starts by stacking the imaginary 

components of y, generating yr, as described in (3)-(4). Then 

the received nT – dimensional  space  is  quantized  and  all  

the possible points )(i

ry  on the lattice are mapped into the 

quantized space. Denoting the quantization process by Q(⋅), 

the resulting quantized vector is 

 [ ]T

nrrr T
yyy 2,2,1,
~,,~,~

� = [ ]( )T

nrrr T
yyyQ 2,2,1, ,,, � . (8) 

Each one of these component { },,,,,~
321, Lir ccccy �∈ , which 

are the L=2
b
 possible quantization levels (described by b bits) 

with a uniform step 

 1+−= ii ccq , { }Li ,,2,1 �∈ . (9) 

Defining )()( l

rr

l

r xHy = as each one of the points in the 

lattice constituted by all possible received vectors, the 

Euclidean distances needed to compute in (5) are of the form 

 
2

)(l

rr yy − = ( )∑
=

−
Rn

i

l

irir yy
1

2)(

,,
~~ , l=1, 2, ⋅⋅⋅, Tn

M . (10) 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-8

-6

-4

-2

0

2

4

6

8

Normalized input

L
e

v
e

ls

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

Normalized input

L
e

v
e

ls

 

                        (a) Bipolar                                              (b) Unipolar 

Fig. 1. Quantizer with L=8 levels (3 bits) for each dimension. 

 

In [12] the authors consider a unitary increment q and 

positive ci whereas we propose that q ∈ Z. In fact, the 

restriction to q=1 would bring difficulties to the 

implementation of the technique that will be presented in the 

next section. Each component of )(i

ry  can be either positive or 

negative and therefore Q(⋅) should be able to deal with both 
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cases. The extension to negative components would require a 

central zero level and hence an even number of levels. 

Figure 1 (a) depicts the appropriate bipolar quantizer. It 

should be noticed that both the received signal and the lattice 

itself are bounded to [−mL, +mL] per real dimension, 

corresponding to the clipping imposed by Q(⋅). We define this 

maximum value for the lattice as { })(max l

rL ym = , taken over 

all the possible )(l

ry  points of the lattice for each different 

channel realization. The use of the quantizer in Figure 1 (b) 

would require shifting each one of the complex lattices 

(comprising Tn
M points in each received dimension) by 

22

LL m
i

m
+ . 

IV. LOOK-UP TABLE TECHNIQUE 

All the possible values of the distance components 
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An inspection of Ω
(1)

 allows us to notice its expected 

symmetry and, furthermore, that it is possible to re-write it as 
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The elements of this matrix can be seen to be associated 

with the values of the quantization levels by 2)2(

, )(
jiji c

−
=Ω . 

Moreover, all the entries in Ω
(2)

 (i.e., all the squared distance 

components) belong to the ordered set 
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Using the rule 
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it is possible to locate and read the value of the distance 

component ( ))(

,,
~~ l

irir yy −  from the values pre-stored in ∆. Note 

that the division by q in (14) converts the real difference 

between the two components into the number of integer 

intervals between them. 

V. SIMULATION RESULTS 

The power penalty in comparison to the ML detection 

introduced by the methods described in Sections III and IV is 

solely caused by the quantization. The look-up table technique 

does not introduce any further errors as it is an exact method 

in the quantized space. Figure 2 shows the quantization error 

for different precision in the number of bits per dimension. 
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Fig. 2. Relative error for the squared Euclidean distance due to quantization as 

a function of the number of quantization bits per component. 

 

This quantization error will impact on the performance of 

the detection in the quantized spaces. The system was 

simulated for three symmetric configurations (i.e., with nT=nR). 

The relation between the signal power 2

xσ and SNR (the 

noise power was defined in Section II) for the symbols taken 

from the constellation ΞC) is obtained according to  
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Besides the evaluation of the power penalty, Figures 3, 4 

and 5 allow comparisons with those of traditional receivers, 

i.e. ZF, MMSE and OSIC with ZF or MMSE criteria. (Note 

that results for the traditional receivers and ML can be 

compared with [2] for 2 × 2 and with [5, 7] for 4 × 4. Notice 

that the performance measure used in this paper is the symbol 

error rate (SER) instead of the bit error rate (which for QPSK 

is about half of the SER if Gray mapping is used as when one 

symbol is detected in error only one of the 2 bits will be 

incorrect). The simulations were implemented using the levels 

{ },,,,, 321 Lcccc � = { })1(,,3,1,1,3,),1( −++−−−− LL �� . 

The results for the three configurations show a similar 

pattern: for b=2 the SER is worse than for any other receiver; 

for b=3 the SER is close to ZF; for b=4 it is similar to the 

performance of OSIC-MMSE, for b=5 it is always within 1dB 

of ML and for b=6 it always coincides with ML. From these 

results, the total number of bits needed to accurately represent 

the nR-dimensional received vector is 5×(2×nR), i.e., for the 

most demanding case considered (4 × 4), 40 bits are needed to 

obtain near the performance of ML. 
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Fig. 3. SER versus average SNR for standard receivers and detection in a 

quantized space for different levels of quantization per dimension in a 2 × 2 

system using QPSK modulation. 
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Fig. 4. SER versus average SNR for standard receivers and detection in a 

quantized space for different levels of quantization per dimension in a 3 × 3 

system using QPSK modulation. 
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Fig. 5. SER versus average SNR for standard receivers and detection in a 

quantized space for different levels of quantization per dimension in a 4 × 4 

system using QPSK modulation. 

VI. CONCLUSIONS 

The number of multiplications (squares) involved in the 

ML detection of one received vector is Tn

R Mn )2( . This paper 

presents a technique which enables a multiplication-free 

computation of the components of the squared Euclidean 

distances by means of a look-up table, which is specially 

adequate for VLSI (very large scale integration) architectures. 

The number of bits needed to represent both the received 

vectors and the lattice associated to each channel realization is 

small. It is expected that this number can be further reduced if 

the adaptive clipping of the signal space is carried out 

independently in each real received dimension. Additionally, 

the number of required pre-stored components constitutes a 

very small table with merely L positions. 

The reduction of the complexity becomes more significant 

as the number of antennas increases. It should be noticed that 

the number of comparisons needed remains exponential with 

the number of transmit antennas, however the overall 

complexity is reduced. 
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