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Abstract— The maximum likelihood detection of multiple input 
multiple output (MIMO) spatial multiplexing systems is strongly 
limited by its complexity. We propose that a quantized version of 
this problem permits the multiplications involved in the 
numerous calculations of Euclidean distances to be replaced by 
the use of a small look-up table storing all the exact possible 
distance components in each dimension of the quantized receive 
space. The number of pre-stored elements is as small as the 
number of quantization levels per dimension. This paper 
presents an approximate analysis of the quantization error which 
allows us to understand the results from simulations performed 
over fast flat fading channels for different MIMO systems. 

I. INTRODUCTION 
MIMO systems [1], [2], make use of the existence of 

different channels between the transmitter and the receiver 
due to the existence of multipath propagation in the channel. 
The systems can be designed in order to exploit that diversity 
either to maximize the diversity of the link (space-time coding 
systems) or to maximize the overall bit throughput (spatial 
multiplexing systems). Tradeoffs between the two frameworks 
have been under investigation and a scheme commuting 
between the two has been recently proposed [3]. Spatial 
multiplexing allows the bit rate of wireless links to be greatly 
increased; however this comes at the expense of an enormous 
rise in the complexity of optimum detection as the number 
transmitting antennas is increased and modulations with 
higher spectral efficiency are used. For the case of equally 
probable symbols the maximum a posterior (MAP) detection 
strategy corresponds to the maximum likelihood (ML) 
criterion, leading to a number of comparisons that grows 
exponentially with the number of transmission antennas. For 
this reason, sub-optimal receivers have always been 
fundamental for spatial multiplexing, leading to both linear 
and non-linear receivers [2], [4], encompassing a range of 
different power performance profiles. Receivers using the 
zero-forcing (ZF) or the minimum mean square error (MMSE) 
criteria constitute the linear receivers whilst the most used 
example of non-linear receivers is the vertical Bell 
Laboratories layered space-time receiver (BLAST), also 
called the ordered successive interference cancellation (OSIC) 
receiver [4], [5]. Nevertheless, their sub-optimality leads to a 
loss in the diversity extracted by the system, i.e., the curves 
representing the number of errors against the signal to noise 
ratio (SNR) are less steep. The call for near ML performance 
originated research into other low complexity methods where 
sphere decoding [4], and lattice reduction [5], [6] are the most 

prominent examples. The latter retains the diversity of ML, 
exhibiting performance curves parallel to those of ML 
(corresponding to a power penalty) at only a fraction of the 
computational cost. Attempts to simplify the brute force 
approach used by ML receivers are always limited by the 
number comparisons needed, and assessments of the 
complexity of the algorithms are chiefly made by counting the 
total number of multiplications required in the detection [7]. 

This paper presents a technique to simplify the calculation 
of the squared Euclidean distances required in ML detection. 
The technique requires the scalar quantization of both the 
received lattice (in each different channel realisation) and the 
received vector. This scalar quantization is performed in each 
dimension (i.e., component) of both the lattice points and the 
received vector. The presented approach contrasts with the 
ones involving vector quantization in MIMO [8 and references 
therein], which is inherently much more complex than 
performing scalar quantization in each dimension which can 
be implemented in parallel. Vector quantization is impaired by 
the slow conversion of the iterative Linde-Buzo-Gray (LBG) 
algorithm [9-Chapter 5] that is needed to run for every 
different channel realization in order to find the best set of 
vector codewords. The proposal in this paper is inspired by 
similar problems in computer graphics and image processing 
where approximations for the Euclidean distance are used [10], 
[11] (not for the squared Euclidean distances though). Note 
that this type of computational problem which involves the 
repeated use of non trivial operations gave rise to the 
approximation that modifies the forward-backward MAP 
algorithm into the max-log MAP algorithm [12-Sec.4.3]. The 
application of completely multiplication-free Euclidean 
distances have been used in MIMO with minimum penalty 
[13], however in that case the approximation occurs for the l2 
norm in the bidimensional space of the transmitted 
constellation. Instead, this paper proposes the simplification of 
the evaluation of the Euclidean distances in the received hyper 
dimensional space where the ML search is undertaken. The 
key component is a look-up table technique originally 
proposed to speed up the calculation of squared Euclidean 
distances in vector quantization [14], [15]. 

II. TRADITIONAL RECEIVERS 
A MIMO system under flat fading can be represented in a 

complex baseband model as 

 gnHxy += , (1) 
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where [ ] ,,,, 21
T

NT
xxxx �= that is, each component is 

transmitted from each one of the NT transmitter antennas, 
[ ] ,,,, 21

T
NR

yyyy �=  where each component corresponds to 
the signal in each one of the NR receiver antennas and the 
noise vector [ ]T

ngggg R,2,1, ,,, nnnn �= is composed of 
complex Gaussian random variables with zero mean and 
variance 2

gnσ  (i.e., 22
gnσ  in both real and imaginary parts). 

The channel matrix H for this nR×nT system is 
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where all the elements are i.i.d complex circularly symmetric 
Gaussian random variables with zero mean and unit variance 
(i.e., with variance 0.5 in both the real and imaginary 
components). The components in x are taken from a set ΞC of 
symbols belonging to an M-ary complex constellation with 
real and imaginary parts taken from the real set ΞR. We 
impose an average signal power 2

xσ =1 for the symbols taken 
from the constellation ΞC. Thus, for a given SNR, the noise 
power 2

gnσ is determined by the relation 
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This model can be converted into one with the double 
number of dimensions where all the elements are real numbers 
by stacking the real and imaginary parts of x and y and 
constructing a new equivalent channel matrix 
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where the symbols ℜ and ℑ indicate the real and imaginary 
components respectively. Equation (1) can be written as 

 rrrr nxHy += . (5) 

Thus [ ]T
Nrrrr T2,2,1, ,,, xxxx �= , [ ]T

Nrrrr R2,2,1, ,,, yyyy �= , 

and [ ]T
Nrrrr R2,2,1, ,,, nnnn �= . Also, Hr doubles the 

dimensions with respect to H. The problem of detecting the 
transmitted symbols is optimally solved by the maximum 
likelihood procedure based in squared Euclidean distances, i.e., 

 { }2
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minˆ rrrMLr
Tn

r

xHyx
Rx

−=
Ξ∈

. (6) 

This implies the measurement and comparison of 
TNM squared Euclidian distances per component of the 
RN2R space or per component of the complex space RNC in (1). 

Hence, the search increases exponentially with the number of 
transmission antennas for a given modulation. 

The simplest linear receiver corresponds to a ZF criterion, 
i.e., an inversion of the channel matrix. In the general case, as 
the channel matrix H is not necessarily square (corresponding 
to NT = NR), then the Moore-Penrose pseudo-inverse of H is 

used, which is given by ( ) HH HHHH
1−+ = where (⋅)H denotes 

the Hermitian transposition. In this case the “filtering” matrix 
is 

 += HWZF . (7) 

This procedure induces noise enhancement in the 
constellation space where the decisions of constellation 
symbols are to be made. The MMSE receiver takes the noise 
into account, resulting in the following “filtering” matrix 
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The OSIC-ZF receiver uses (7) in an initial iteration. The 
component of yr with the smallest noise amplification by the 
corresponding row of WZF is selected and detected. The next 
step is to remodulate that symbol and subtract its effect from 
the original received yr. This procedure is repeated for the new 
signal, originating the detection of a second component of y, 
and is repeated until all components have been detected. The 
OSIC-MMSE receiver operates similarly by applying (8) 
instead of (7). The complexity of OSIC is only polynomial 
with NT [7] but the fact that an erroneous decision in one 
component cascades the error throughout the components to 
be subsequently detected explains the fact that OSIC is not 
able to entirely exploit the diversity available in the system. 

III. MULTIDIMENSIONAL SCALAR QUANTIZATION 
The proposed receiver starts by stacking the imaginary 

components of y, generating yr, as considered in (5). Then the 
received NR-dimensional space is quantized and all the 
possible points on the lattice are mapped into the quantized 
space. The possible points in the lattice are )()( l

rr
l

r xHy =  l=1, 

2,…, TnM . Denoting the quantization process by Q(⋅), the 
resulting quantized received vector is 

 ry~ = [ ]T
Nrrr T

yyy 2,2,1,
~,,~,~

� = [ ]( )T
Nrrr T

yyyQ 2,2,1, ,,, � . (9) 

Each one of these components { },,,,,~
321, Lir ccccy �∈ , 

which are the L=2b possible quantization levels (described by 
b bits) with a uniform step 

 1+−= mm ccq ,   { }Lm ,,2,1 �∈ . (10) 

The Euclidean distances needed in (5) are approximated by 
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For a particular lattice point )(~ l
ry , and defining =∆ i  

( ))(
,,

~~ l
irir yy − , each particular squared Euclidean distance is 
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In [14] the authors consider a unitary increment q and 
positive ci whereas we propose that q can be any integer. The 
simulations were implemented considering the levels 
{ },,,,, 321 Lcccc � = { }.)1(,,3,1,1,3,),1( −++−−−− LL �� In fact, 
the restriction to q=1 would bring difficulties to the 
implementation of the technique that will be presented in the 
next section. Each component of )(l

ry  can be either positive or 

negative and therefore Q(⋅) should be able to deal with both 
cases. The extension to negative components would require a 
central zero level and hence an even number of levels. 

Fig. 1 (a) depicts the appropriate bipolar quantizer. It 
should be noticed that both the received signal and the lattice 
itself can be bounded to [−yi,sat, +yi,sat] in the ith real dimension, 
corresponding to the clipping imposed by Q(⋅). This maximum 
value could be { })(

,, max l
irsati yy =  in each component and 

updated in each channel realization, however we will make 
them all equal to { })(

,max l
irsat yy =  taken over all the real lattice 

points. This creates an hypercube with edges having size 2ysat. 
The look-up technique to be presented in Section V was 

originally proposed in [14] for vector quantization considering 
the quantizer of Fig. 1 (b). However it is inappropriate for the 
MIMO situation as it would require shifting each one of the 
complex lattices (comprising TnM points in each received 

dimension) by 
22
satsat y

i
y + . 
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                        (a) Bipolar                                              (b) Unipolar 

Fig. 1. Quantizer with L=8 levels (3 bits) for each dimension normalizing the 
input to ysat. 

 

IV. MULTIDIMENSIONAL QUANTIZATION ERROR 
In this section we quantity the effect of the quantization 

described in Section III. We will introduce some assumptions 
that will greatly simplify the analysis in order to allow us to 
extend the analysis of scalar quantizers (e.g. [9-Chapter 5]) to 
the case of MIMO detection. 

A. Uncorrelated noise and uncorrelated dimensions 
Given the stacked model (4)-(5), this assumption means 

that not only the signals in the different antennas are 

uncorrelated but also that their real and imaginary components 
are also uncorrelated. Moreover, we assume that the 
quantization noise, nq, is independent of both the received 
signal ry  and the lattice points )(l

ry . These two assumptions 
allow the total variance (or power) of the total noise in a 
quantized vector to be written as 

 2
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2
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Rqqqqt Nninnnn σσσσσ +++++= �� . (13) 

where 2
,inq

σ  is the variance of the quantization noise in the ith 

dimension. 

B. Saturation does not impair detection 
The complex lattice of possible points in each receive 

antenna is a combination of NT constellation points drawn 
from ΞC weighted by the complex Gaussian probability 
density functions of the respective row in (2). If the hypercube 
defined by the side ysat contains all the lattice points, then the 
saturation noise does not introduce any degradation in the ML 
problem. Consider the example in Fig. 2 which shows the 
complex lattices for each receive antenna of a 2 × 2 system 
using a traditional QPSK constellation and the channel matrix 
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Fig. 2. The complex lattices in the two complex components of a 2 × 2 system 
with QPSK symbols ( 16=TNM ). 

 
The effect of saturation will give rise to a quantized point in 

one of the faces of the hypercube. As can be seen in the 4 
(real) dimensional case depicted in Fig. 2, the closest lattice 
point can only lie at the intersection of the bounded subspace 
and the hypersphere D which actually is the projection of y in 
the closest side of the hypercube. So, the original kth distance 
can be expressed in terms of the distance to the projection and 
the remaining kth distance bk: kbyyd +−= )~(k . Because 

)~( yy −  is fixed and it is impossible to have a lattice point 
inside D, then minimizing of dk or bk yields the same solution. 

C. Uniform error per component 
As a consequence of assumption B, the only cause of 

degradation in the performance will be caused by the granular 
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noise. Considering that the quantization in each dimension is 
described by a uniform error distribution, it is straightforward 
to obtain the well known expression for the quantization noise 
power (e.g. [9-Chapter 5]) 
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Independently of the number of dimensions NR, the mean 
error per dimension obtained by simulation using 
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is depicted in Fig. 3. 
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Fig. 3. Quantization error for the squared Euclidean distance as a function of 
the number of quantization levels specified by the number of bits required. 

 
Using (13) and (15), the signal to total quantization noise 

ratio can be obtained by 
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D. Equal saturation in the dimensions (hypercube) 

When satiy ,  is made the same in all the NR dimensions, (17) 

yields 
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or, equivalently, 
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Expression (19) shows that when NR doubles the 
quantization noise increases by 3 dB. On the other hand, every 
extra bit used in the quantization of each component improves 
the signal to quantization noise on that component by 6 dB. 
Thus, when increasing the NR from 2 antennas to 4, only 0.5 
extra bits would be necessary to compensate the loss and 
obtain the same performance of the 2 × 2 system (see Fig. 4). 

A second outcome from (19) is that the last term implies 
that use of an equal ysat which leads to a very poor 
performance in the antennas with compact lattices. Indeed, Fig. 
2 corresponds to such a case: the total power in the first row 
of (14) leads to a much more compact lattice in first receive 

antenna, i.e., ( ){ } ( ){ }2)(
2,

2)(
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l
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l
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Fig. 4. Additional bits required to compensate the loss introduced by more 
receive antennas (i.e., dimensions), as defined by ( )RNb log1002.6 = . 

 

V. LOOK-UP TABLE TECHNIQUE 

All the possible values of the distance components 2
i∆  in 

(11) are an element of the matrix 
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An inspection of Ω(1) allows us to notice its expected 
symmetry and, furthermore, that it is possible to re-write it as 
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The elements of this matrix can be seen to be associated 
with the values of the quantization levels by 2)2(

, )( nmnm c −=Ω . 

Moreover, all the entries in Ω(2) (i.e., all the squared distance 
components) belong to the ordered set 
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it is possible to locate and read the value of the distance 
component 2

i∆  from the values pre-stored in Ω. Note that the 
division by q in (23) converts the true separation of the two 
components into the integer number of intervals between 
them. 

It should be emphasised that the technique using this non-
truncated look-up table does not introduce any errors in 
addition to the ones described in Section IV as it is an exact 
method in the quantized space. The authors in [14] and [15], 
proposed a truncated table to replace Ω, however this would 
not be useful in the context of MIMO detection. 

VI. SIMULATION RESULTS 
Simulation results for the receiver using maximum 

likelihood in the quantized space (MLQS) are presented in 
Figures 5, 6, 7 and 8 for different systems using QPSK and 
16-QAM modulations and symmetric configurations (i.e., 
with NT = NR). All figures include the performance of the 
proposed receiver for different values of the number of bits 
per component and also the performances obtained using the 
traditional receivers (ZF, MMSE and OSIC with ZF or MMSE 
criterion) as well as the performance obtained using ML. The 
measure of the performance used in this paper is the symbol 
error rate (SER) instead of the bit error rate (which for QPSK 
is about half of the SER if Gray mapping is used as when one 
symbol is detected in error only one of the 2 bits will be 
incorrect). The simulations were checked against other results 
available in the literature: for QPSK the traditional receivers 
and ML can be compared with [2] for 2 × 2 and with [5], [7], 
for 4 × 4; for 16 QAM with 2 × 2 antennas the curves can be 
checked in [16]. 

The analysis in Section IV estimates the error involved in 
the quantization process. As always, the performance analysis 
also needs to include the effect of the Gaussian noise 
introduced in (1) and defined in (3). Since these noise sources 
are independent, the effective noise power is given by 
summing the respective noise powers. Consequently, the 
overall SNR is 
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or, 
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A consequence of this relationship is that the overall SNR 
is always limited by the partial SNRs, as 
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which is easy to deduce from (24.b). 
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Fig. 5. SER versus average SNR for standard receivers and detection in a 
quantized space for different levels of quantization per dimension in a 2 × 2 
system using QPSK modulation. 
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Fig. 6. SER versus average SNR for standard receivers and detection in a 
quantized space for different levels of quantization per dimension in a 3 × 3 
system using QPSK modulation. 
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Fig. 7. SER versus average SNR for standard receivers and detection in a 
quantized space for different levels of quantization per dimension in a 4 × 4 
system using QPSK modulation. 
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Fig. 8. SER versus average SNR for standard receivers and detection in a 
quantized space for different levels of quantization per dimension in a 2 × 2 
system using 16-QAM. (A symbol error probability can be >0.5.) 

 
It is expected that for all transmission schemes as the 

number of quantization levels increases the SER will meet its 
lower bound imposed by the Gaussian noise. Conversely, 
when the quantization noise is dominant, the performance is 
impaired by an overall SNR that is actually worse than that 
implied by the horizontal axis of the figures. 

The results with QPSK show a similar pattern: for b=2 the 
SER is worse than that for any other receiver; for b=3 it is 
close to the performance of ZF; for b=4 it is similar to the 
performance of OSIC-MMSE; for b=5 it is always within 1dB 
of ML; and for b=6 it always coincides with ML. These 
results show that the total number of bits needed to accurately 
represent the NR-dimensional received vector is 5×(2×NR), i.e., 
for the most demanding case considered (4 × 4), 40 bits are 
needed to obtain near ML performance. 

However, it should be observed that for an identical 
number of lattice points in each dimension (44=162=256) the 
use of 16-QAM requires a greater number of quantisation bits 
than does QPSK. 

VII. CONCLUSIONS 
In each of the 2NR real dimensions of the MIMO spatial 

detection problem one has TNM possible points. Hence, the 
number of multiplications (squares) involved in the ML 
detection of one received vector is TN

R MN )2( . This paper 
presents a technique which enables a multiplication-free 
computation of the components of the squared Euclidean 
distances by means of a look-up table, which is particularly 
suitable for VLSI (very large scale integration) architectures. 
The needed number of bits to represent both the received 
vectors and the lattice associated with each channel realization 
is small and could be reduced by quantizing with 
independently saturations in each real received dimension. 
Additionally, the number of required pre-stored components 
constitutes a very small table with only L positions. 

The simplified analysis that is presented closely represents 
the impact of the quantization observed in the simulations: 
doubling the number of antennas from 2 to 4 originates a 

power loss that can be more than compensated by increasing 
the number of bits per dimension from 5 to 6. Indeed, 
inspecting the cases in Fig. 5 and Fig. 6 and measuring the 
energy differences for BER<10-3, the correct number of 
additional bits required to maintain performance can be seen 
to be the predicted “half bit”. In practical systems the number 
of receive antennas is not expected to be easily doubled from 
say 4 to 8. Therefore the need for a 6th quantization with 
QPSK is not required. It should be noticed that the number of 
comparisons needed remains exponential with the number of 
transmit antennas, however the overall complexity is reduced. 
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