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Abstract— Linear network coding (LNC) introduced a new 
paradigm for routing data across networks where the transported 
packets are not the original information packets but rather linear 
combinations of the original packets. This is known to allow a 
more efficient use of the network resources. With LNC based on 
systematic network codes, the network’s capacity is chiefly defined 
by the rank of the end-to-end equivalent transfer matrix. This 
paper presents a network-layer emulator based on the object-
oriented programming paradigm, which allows, for any network 
topology, to have the network’s capacity self-optimized by 
adapting the coding operations performed at each node, 
depending on the impact the changes have on the global rank of 
the global transfer matrix, and on a metric related to the use of 
network’s resources. 
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I.  INTRODUCTION 

Network coding (NC) was first presented as a method for 
error correction in  [1], which is deemed to be the first paper on 
the topic. It was then shown how NC allows transmitting more 
information across a network in comparison to traditional 
routing  [2]. In general, a well-designed NC method guarantees 
both an efficient use of the network’s resources and robust end-
to-end connections in case of link failures [3]. 

Both wireless and wired packet-based network may have 
different topologies and different types of nodes  [3]  [4], but are 
usually capable of establishing several different paths between 
the source and destination nodes by setting different connections 
at intermediate nodes. These intermediate nodes may be 
responsible for making their own forwarding decisions, based 
on the global or local knowledge they have of the network, or 
they can be controlled by some central network manager. This 
latter approach has gained relevance in the context of software 
defined networks (SDN). The overall transfer matrix of the 
network can be known, corresponding to the so-called coherent 
model or unknown even to a central processor, called the non-
coherent model (see, e.g., Kschischang’s preface in  [5]). 

In the most common case of binary linear NC (LNC), the 
intermediate nodes always combine the packets from different 
sources by applying XOR functions to sets of packets. Research 
on fundamentals and applications of binary and non-binary 
network coding has been mounting and recent comprehensive 
results and surveys can be found in  [5]  [6]. It should be noted 

that NC ideas are not limited to the packet transmission layer 
and its core idea have also been extended to the physical layer 
of wireless networks (e.g., [7]  [8]). 

The work presented in this paper was initially inspired by the 
the protection scheme for multi-hop wireless networks proposed 
in  [9]. That protection scheme was tested with one and two 
intermediate node failures and quantified the quality of service 
(QoS) by means of parameters such as packet loss ratio (PLR) 
and latency. In  [10], the authors used NC to introduce a 
protection scheme against single and multiple link failures, 
recovering a second copy of each data unit transmitted 
“automatically” without rerouting data or without failure 
detection. In  [11], the authors proposed a general method to 
design the transmission protocol with binary physical-layer 
network coding (PLNC). They examined several proposed 
protocols in terms of energy consumption, error rate, and 
throughput performance and decoding strategy. 

This paper presents a LNC emulator which allows the study 
and assessment of different LNC strategies, different network 
types (either wired or wireless), under any topology specified by 
the user. The QoS metrics considered in the analysis are the PLR 
and latency. The main contributions of this work are its 
grounding on fundamental properties of NC (e.g., verification of 
conditions for viability); and on the other hand its flexibility 
(e.g., the coding coefficients can be computed by the emulator 
or provided by the user and obtained via any other means). This 
emulator was developed using multiple threads in Java and 
provides a more flexible alternative to other simulators such as 
the one in [12] (written in Python) or the one in [13] (written in 
C++). The presented emulator allows simulating network coding 
with any defined network topology and implements a self-
adaptation mechanism for the network coding operation carried 
at the nodes. The emulator was tested with the same cases 
analyzed in [9]. 

The paper is organized as follows. The next section 
introduces LNC in packet networks. Section III describes the 
developed emulator and its a priori requirements. Section IV 
describes the network topology considered. Section V describes 
the operations held at the different nodes to combine the 
incoming packets. Section VI shows how a viable network 
coded network is always guaranteed after the self-adaptation 
process of the network codes that take place at each node. In 
Section VII a central control unit is added (a “genie” or 
“genius”). Section VIII presents results obtained with the 
network emulator, as well as the conclusions. 



II. A BRIEF INTRODUCTION TO LINEAR NETWORK CODING 

LNC increases the throughput of a network from a source 
node to a destination node due to a more efficient use of the 
several physical paths between them. Additionally, the 
robustness to packet losses and link failures is increased given 
that the information packets that did not arrive at their 
destination can be inferred from the linear combinations of the 
coded packets that have arrived. Also, LNC brings more security 
and complexity to the network  [14]. However, the use of LNC 
requires transmitting additional information along with the 
messages, notably the information of which packets have been 
combined to form each coded packet  [15]. When doing this, 
there is no need to store additional information in the nodes of 
the network. This extra information can be easily placed in 
packet headers, which in this paper are called “transfer vectors”. 
The existence of headers is common in standard protocols like 
the TCP protocol  [16].  

A. Operations in LNC and coded packet structure 

In LNC the operations at the nodes are constrained to be 
linear over a finite integer field with q symbols in the alphabet, 
i.e., a Galois field denoted as  �� or GF(q)  [17],  [4], [5]. In this 
work a binary field is considered, and therefore both the 
transmitted packets and the coefficients of the linear 
combinations are taken from GF(2). All operations (namely 
addition, division, multiplication, subtraction, and Gauss-Jordan 
elimination) are defined over GF(2)  [11] [18]. 

Of chief practical importance is the structure of the packets 
that are exchanged between nodes, and how they convey both 
the coded packets (in the payload) and the control information 
about how the packets have been coded. That is, packets arriving 
at the ��� input of node N result from the concatenation of a 

transfer row vector, ��,�
 (��)

, and its corresponding coded packet, 

��,�
(��)

, having the format ���,�
 (��)

���,�
(��)

�. One of the fundamental 

processes of LNC is expressed by ���,�
 (��)
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���,�
 (��)
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���, where �� is a matrix having in its rows the 

original source packets. Naturally, the number of columns in 

��,�
 (��)

 must match the number of rows in ��. The stacking of all 

row vectors ��,�
 (��)

 (i.e., the transfer vectors) creates matrix 

 ��
(��)

, and the stacking of the row vectors ��,�
(��)

 (i.e., the coded 

packets arriving at node N) generate matrix ��
(��)

. 

At each node one has packets in ��, which correspond to a 
burst or “generation”. Both the size of the packets (number of 
columns in ��), and the size of each “generation” (number of 
rows in ��) are system parameters. It should be noted that a row 

vector ��,�
 (��)

 describes “the memory” of all the linear operations 

performed at each visited node and that transformed the original 
source packets into the coded packet arriving at the ��� input of 
node N. In fact, this is a direct result of using systematic network 
codes  [19], hence, the left part (control information) of the 
packet tracks its previous path and directly reveals what is being 
combined in the coded message part of the packet (payload). 

Similarly, at the output of the ��� output of node N one will 
find packets of the form: 

���,�
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���,�
(���)

� = ���,�
 (���)

���,�
 (���)

���() 

B. Types of Nodes 

One now describes how the different elements in a network 
process coded packets, starting with the intermediate nodes – or 
simply network nodes (typically routers if the network layer is 
considered). In traditional packet networks, the role of an 
intermediate node is to forward received packets to another node 
“closer” to the destination. With NC, the intermediate node 
firstly encodes received packets and later forwards the coded 
packets to another node “closer” to the destination. 

Similarly to what has been expressed for the input, at the 

output of node N, one can build the transfer matrix ��
(���)

, as 

well as matrix ��
(���)

 with the set of output packets stacked as 
the rows of this matrix after a new coding operation is performed 
at that node. In matrix form, the operations performed at each 
node N are described by 

���
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(���)
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(��)

� ��
(��)

� 

where �� is the connection matrix of node N, which describes 
the coding (or combining) process performed at that 
intermediate node. Note that after the coding takes place at a 

node, one has the output transfer matrix ��
(���)

= �� ��
(��)

 and 

the new set of vectors ��
(���)

= �� ��
(��)

= �� (��
(��)

��). The 

last equality denotes the fact that the header  ��
(��)

 contains the 
information of the accumulated network coding operations that 
the arrived packets went through from the source until the 
present node to which they are arriving. Moreover, the columns 
of �� are associated to the node’s logical inputs and the rows are 
associated to the node’s logical outputs. The inputs and outputs 
considered at each node do not have to correspond necessarily 
to physical inputs or outputs. Actually, by considering logical 
inputs and outputs enables that coded packets can be sent over 
physical links at different rates. The practical implementation of 
such virtual inputs and outputs is discussed in section VIII.  

Let us now consider a simple example where �� describes 
the LNC processing at node with three logical inputs and two 

logical outputs with �� = �
1 1 1
1 0 1

� over ��. With some 

simplification of the notation, assume that a node N received 
from source si, at each of its three inputs,  packets x1 = [11100], 
x2 = [00111] and x3 = [10101] with transfer vectors hx1=[100], 
hx2=[010] and hx3=[001] respectively (note that this set of 
headers is the particular case that always happens at the first 
node of a path), all belonging to the same burst or to the same 
“generation”. In particular, the header of the second combined 
packet output becomes: 

  ��,�
(���)

=[ hx1(1)⊕hx3(1) , hx1(2)⊕hx3(2), hx1(3) ⊕ hx3(3)]  () 

and, in general 
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               = �
0 1 1 1 0
0 1 0 0 1

� .                           () 

On the other hand, source nodes will be responsible for 
generating and sending messages to a certain destination in the 
network. To send those messages the source node typically 
cannot send the packets directly to the destination, which is a 
situation that happens quite frequently in upload scenarios. To 
encode the packets, the source node uses linear independent 
vectors (also called a linear lifting  [3],  [20]). If the source s 
wants to send packets p1, p2 and p3 over ��, the initially 
transmitted packets can be stacked and create 

�� = [��|�] =  �
1 0 0 
0 1 0 
0 0 1 

� 

��

��

��

�,()

where the transfer matrix at the source is the identity matrix (c.f. 
the previously given example). 

Finally, the destination node is responsible for decoding 
received packets, as described in Algorithm 1. A fundamental 
fact influencing the reliability of the system is that in order for 
the destination to be able to decode the set of packets that arrive 
to it the rank of the global transfer matrix needs to be equal or 
larger than the number of source packets in one particular 
generation. At the destination one will have to infer the original 
source packets � from the end-to-end relation between the 
original packets � and coded packets Y that arrived at the 
destination, described by the global transfer matrix H, i.e., one 
has to solve, over GF(2), the system � = �� for the P matrix. 
This involves performing one matrix inversion over GF(2) at the 
destination d: 

���
(��)

�
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���
(��)

� ��
(��)

�()

Algorithm 1: Algorithm at the destination when receiving a new packet 

input:  Packet : ∀p ∈  Packet 
(any network packet) 
 
input:  Link : ∀l ∈  Link 
(input link associated to the node) 
 
inBuffers : the node list of in buffers 
out ← ∅ 
add packet p to buffer of link l                    
for_each b of inBuffers do 

for_each p2 packet of b do 
if there is a bucket created for p2 source 
node, with p2 generation number and p2 destiny 
node then  

if b increases rank then  
add p2 to b 

end 
      else  

create new bucket for p2 
end 

end 
end 

It becomes clear from both the last expression and from 
Algorithm I that the rank of the matrix to be inverted is of capital 
importance for a successful decoding, and thus to make a 
decision about the viability of the network structure and 
connection matrices. This will be explored further in section VI, 
where a process for designing LNC viable networks is described. 

III. NETWORK EMULATION 

Based on the concepts laid out in the previous section, an 
emulator was developed in Java (named “Net Genius”) using the 
object-oriented paradigm. In the emulator each node in the 
network has the same processing functionalities and reacts to 
inputs, with all nodes working in parallel, emulating the routing 
of data by means of multiple threads. Each node is thus emulated 
by a thread and each thread is independent from the others. The 
emulator has two operating modes: a basic mode and an 
advanced mode. 

In the basic mode, the network structure and the operation at 
each node occurs according to the defined physical and logical 
links and predefined connection matrices, whether set manually 
or loaded from a preset configuration. Each node is only aware 
of neighbor nodes to which it is connected to, corresponding to 
a decentralized network. In this mode via probing packets it is 
also possible to check if packets can be decoded (that is, the 
network viability). 

Conversely, in the advanced mode, only the network 
structure is predefined, the operation at each node, i.e. its 
connection matrix, is centrally defined by a system entity (a 
“genie” or “genius”) that controls the network. 

A. Flexible Emulation of NC 

The emulator was made flexible enough to either implement 
traditional routing or NC. The user only needs to define the 
network topology, and then the linear model defined in the 
previous section suffices to emulate the routing using NC. The 
user has the option of defining the physical and logical links 
between nodes either by manually configuring the network 
nodes in the emulator setup or by using the emulator console’s 
commands. The user can choose the number of nodes and how 
they are connected. Alternatively, a pre-set configuration can be 
chosen when a quick setup of the emulator is needed. The 
network is distributed and operates depending on the physical 
connections, whether it is a manual configuration or a pre-set 
configuration. Unlike the emulators in [12] and [13], the 
presented emulator allows the user to define the coding matrixes 
are each node, as one would expect in a truly SDN context. For 
example in [12] the coefficients are sampled from a uniform 
distribution. The emulator then checks if the defined network 
topology and the NC operations lead to a viable network, by 
checking the rank of the end-to-end transfer matrix. 

B. Emulation of the different nodes 

In the following, one describes how the different nodes in of 
a LNC enabled network were emulated by means of a running 
example. Assume that packet p, belonging to the second 
generation of source s, arrives at destination node g. When g 
receives the packet, it will check if there is a bucket created for 
that generation and source. If that bucket is already created, p 
will be added to the existing bucket only if it “adds value” to the 
existing bucket, i.e., if the bucket rank increases or reaches the 
desired rank. Each node will have several buckets that will store 
the packets of different sources or generation. 

In the example in Figure 1, the intermediate node r1 is 
connected to two sources and to three other intermediate nodes; 
it has two IN buffers to store the received packets and three OUT 
buffers to store the computed packets to be sent. 



 

Figure 1 - Buffers of the intermediate node. 

 

C. Packet structure 

The packed packet structure proposed and used in the 
emulator is shown in Figure 2. This structure enables the linear 
model presented in Section II to be implemented in real network. 
The fields in the packer header contain control information that 
is needed for coding and decoding the network-coded data field, 
which is the message itself. 

 

Figure 2 - Packet structure. 

The ID of the packet is composed of the node ID and a 
sequential number. For example, when a packet is produced at 
the source s1, its ID will be “s1n” where n is a sequence number 
within a certain generation from that source node. The 
generation ID identifies the generation number of the packet and 
this generation number is associated with the burst size (also 
named the “generation size”). For example, in a burst of size 
four, there will be four packets belonging to the same generation. 
The source ID and destination ID fields respectively contain the 
source identifier and the destination identifier. These fields are 
important so that network nodes may correctly encode and 
decode the packets and forwarding the packets. Only two values 
can be assigned to the type field: [INFORMATION, 
PROBING]. These values indicate if a packet contains 
information (data packets), or if it is one of the so-called 
“probing packets” that are used to validate the NC transmission, 
i.e., to check whether the messages can be correctly decoded. 

 

IV. PRESET NETWORK TOPOLOGY  

Hereafter one assumes the particular case of the network 
depicted in Figure 3, with one source node, six intermediate 
nodes and one destination (or terminal), which corresponds to 
the preset network present in the emulator. Assume that node r1 
receives packets p1, p2, p3 and p4 from s1. The transfer vectors 
(in ��) are [100], [011], [101], and [110] respectively. and 
therefore, the transfer matrix of r1 is 

 

Figure 3 - Network model. 

� =  �

 1 0 0 
 0 1 1 
 1 0 1 
 1 1 0 

�.                                    () 

In order to correctly decode the packets received, r1 cannot 
have a rank deficient H matrix, i.e., it must receive a minimum 
of m linearly independent transfer vectors from each generation  
[18], where m corresponds to the number of packets of a 
generation, i.e., the burst size. In this example, the source s1 
sends three packets and destination r1 receives four packets. The 
required rank of H, so that r1 is able to correctly decode the 
source packets, is 3 (as 3 packets have been coded and sent). 

 

V. CODING AND DECODING 

The version of the described emulator only combines 
packets originating from the same source node. The idea of 
combining information from different sources would pose a 
number of challenges for buffer management, however this 
proposal does not undermine the extension of this LNC process 
to the more general scenario. Note that instead of having a fixed 
transfer matrix H, the intermediate nodes and the destination 
nodes have a dynamic H matrix. Each packet carries a transfer 
vector in the packet header and this transfer vector becomes a 
row of H at each intermediate node. At each output i of a node, 
one gets a linear combination of packets received by that node, 
defined by the i-th row of the connection matrix C. Only packets 
with the same generation number and from the same source are 
encoded together. In the example in Figure 4, r3 will always 
combine packets from r1 and r2 and send the encoded packet to 
r4 and r5. In the general case instead of r3 having just one 
connection matrix, there will be n connection matrices, where n 
is the number of source nodes that are connected to the node. 

Without any loss of generality, we assume in the remainder 
of this paper that there is only one source. As one may see in 
Figure 4, what is sent to r4 differs from what is sent to r5. The 
intermediate node r4 will receive packet x3 (which in the 
example is in fact the same as x2), and r5 will receive x4=x1⊕ x2. 
It should be highlighted that the inputs and outputs are the 
logical links connected to the node and not physical links. 
Considering that two physical links exist, one with capacity C 
and another with capacity 2C, from the NC perspective one 
accounts for the existence of three logical links. Initially all the 
elements of C are set to 1, that is, by default all the outputs of a 
node replicate the XOR of all the received packets by that node. 



 

Figure 4 - Connection matrices of node r3. 

 

VI. RANK METRIC FOR A VIABLE NETWORK 

When a user sets up a determined configuration, by manually 
configuring the network physical or logical communication 
links and choosing the basic mode, one needs to guarantee that 
the network is viable, i.e., that it guarantees a certain level of 
reliability under certain network conditions. In our emulator this 
process is based on the exchange of probe packets and 
verification of a set of criteria. Probe packets are forwarded at 
each node according to connection matrix C. The two criteria 
that must be satisfied are: 

1. Connection criterion: each destination node must be 
connected to at least one source node (this criterion 
guarantees that at least one probe packet will be received 
by each destination node); 

2. Linear independence criterion: each destination node 
must have an H matrix whose rank is equal or greater 
than the burst size (i.e., the size of the generation). 

To guarantee that the first criterion is verified, the recursive 
Algorithm 2 was created. This algorithm ensures that every 
destination node is connected to at least one source node, by 
recursively checking if a network node is connected to source 
node. This procedure is applied by all destination nodes of the 
network. If a destination has zero connections to a source node, 
the user is notified and the same happens if all destination nodes 
have zero connections to a source node. In short, the algorithm 
starts from a destination node and searches through the 
connected links for source nodes, ensuring that the destination is 
connected to at least one source node. A node that is not 
physically connected to another node has a null matrix as a 
connection matrix, i.e., C = []. So, the algorithm can perform 
this verification recursively throughout the connection matrices. 

Algorithm 3 ensures the second viability criterion. To that 
end, at the beginning of the emulation probing packets are sent 
with the objective of checking if the network is viable in terms 
of correctly decoding the message sent by the source node. 
When the destination receives all the probing packets it will 
check if the transfer matrix reaches the desired rank, i.e., if is not 
rank deficient. Note that the minimum desired rank of H is equal 
to the burst size (i.e., the size of the generation). 

Algorithm 2: Recursive algorithm for checking node connection extreme-to-
extreme. 

checkSourcesConnectivity()  
inBuffers : the node list of in buffers 
out ← ∅ 
for_each b of inBuffers do 

get node n from the link of b 
find recursively a source node coming from b, 
searching on n (findSource method) 

end 
______________________________________________ 
findSource (Node n, Buffer b) 

sourcesFound: an temporary list of source nodes  
              found in the node 
input:  Node : ∀n ∈  Node 

           (any existing type of network node) 
input:  Buffer : ∀b ∈  Buffer 

           (any buffer) 
out ← ∅ 
for each b of inBuffers do 

if n is an intermediate node then 
for_each link of node n do 

get node n2 from link of b 
if n2 is not n then 

if n2 is a source node then 
adds n2 to the sources found 

else  
find recursively a source node 
coming from b, searching on n2  

end 
end 

end 
else if n is a source node then 

add n2 to the sources found 
end 
end 

end 

 

 

Algorithm 3: Algorithm for checking linear system independence. 

input:  Bucket : ∀b ∈  Bucket 
        (any bucket) 
out ← ∅ 
get matrix H from the transfer vectors inside the 
packets of b 
define integer desiredRank as the burst size of b 
if rank of H is less then the desiredRank then 
   notify user that the network is rank deficient 
   stop emulation 
else  
   enable the emulation 
end 

 

 

VII. SELF-ADAPTATION OF NETWORK CODING 

In the advanced mode there is an entity (called “genius”) that 
has full knowledge of the network. This means that the process 
of checking the required linear independence is done quicker 
than in the basic mode, because there is no need for sending the 
probing packets. In fact, in advanced mode, the genius does 
more than checking linear independence. Instead of only 
checking if the system is linearly independent as in the basic 
mode, the genius attempts to gradually improve the network by 
changing the appropriate connection matrices. By knowing all 
connection matrices from all intermediate nodes and the 



source’s H matrix, the genius is capable of computing all 
matrices in order to get the H matrix of the destination nodes. 
The genius uses a recursive algorithm to test and change several 
combinations of the network physical connections. Each time 
the user starts the emulation for the same network, the genius 
will execute this algorithm, so that the network’s configuration 
may change; this allows the user to test the network with 
different configurations until the genius finds the best possible 
configuration. In order for the genius to accept a new 
configuration, that particular configuration must have a better 
rating than the last saved configuration. The configuration 
rating, defined as CRa, is the acceptance criteria considered, and 
is calculated in the following manner:  

��� = �� ×
������ ����

��� ����
 + �� ×

������ ����

��� ����
            ()

This algorithm is based on the weights ��  and �� , 
corresponding to the overall matrix rank and to a network 
resources’ cost. The latter is the total number of links within the 
network, i.e., the number of links that are being used by all nodes 
(each link connects two nodes). The former is the metric that 
assures that packet decoding is possible at the destination node. 
By considering these two metrics, one obtains a fitness function 
that can be used by different methods to set the connection 
matrices and thus build a self-adapting network (e.g., simulated 
annealing, or gradient descent methods). Packet loss is important 
in scenarios where LNC is used for improving the network 
reliability. In order to assess LNC configurations in scenarios 
with packet losses the user has the option of choosing the link 
error probability for each emulation, independently of the 
emulation mode. Being Pk the packet loss probability in all the 
links, and s the number of jumps (hops) between the source and 
the destination along a certain path, the packet loss probability, 
Pe, over that path, is given by ��=1 − (1 − ��)�. In the 
examples of Section VIII one considers scenarios with three 
different values for the packet loss probability, Pk: no packet 
loss, 2% and 10%. 

 

VIII. EXAMPLE RESULTS AND CONCLUSIONS 

In each emulation and for each node, the emulator presents 
the number of buckets expired, the number of buckets computed, 
the number of packets received, and the number of packets sent. 
In the following are presented, for each source, the number of 
packets sent and the number of generations. Nice different cases 
were emulated for the network, and are listed in Figure 3. The 
coding method and the packed loss probability (Pk) used in each 
case are listed in Table I. In all cases �� and �� were set to 0.7 
and 0.3, respectively. In order to assess the performance of each 
case, one uses the packet loss ratio (PLR) and a latency metric. 
PLR corresponds to the ratio of total number of packets 
successfully received at the destination node over the total 
number of packets sent by all sources. Latency is calculated as 
the maximum sum of the accumulated propagation delay, 
switching delay, and transmission delay over all the paths 
between source and destination. 

 

 

TABLE I – Emulated scenarios. 

Case Method Pk 
1 No LNC 0 % 
2 No LNC 2 % 
3 No LNC 10 % 
4 Distributed LNC 0 % 
5 Distributed LNC 2 % 
6 Distributed LNC 10 % 
7 Centralized LNC 0 % 
8 Centralized LNC 2 % 
9 Centralized LNC 10 % 

 

 

Figure 5 - PLR results for cases 1-9 for the network presented in section IV. 

Figure 5 shows the results of PLR for the emulation of the 
network presented in Figure 3. In the cases with NC, the PLR is 
always below 40%. When there are no errors in the links, the 
PLR is consequently zero (overlapping curves at the bottom of 
the graph), and it increases for larger error probabilities. In these 
cases of non-zero link error probabilities, the traditional 
approach presents worst PLR results than NC. This was to be 
expected given that in NC, when a packet is lost, the information 
may be recovered from a set of linear combinations of native 
packets. This contrasts with the traditional approach where there 
are no coded packets, and therefore, when a packet is lost, there 
is no way of recovering that packet unless it is retransmitted.  

Between centralized and distributed LNC one cannot find 
significant differences in the results in Figure 5 (although with 
higher error probabilities in the links the centralized approach 
was seen to perform slight better). The paper shows that lossy-
networks benefit from a network coding approach due to the 
resilience provided by the linear combinations of packets. In 
spite of a higher implementation complexity, the centralized 
network coding approach is the one that achieves the best QoS 
metrics in all the emulated scenarios. It was also seen in the 
emulation results that NC performs worse than the traditional 
routing in terms of latency and jitter (defined as the maximum 
variation between the arrival time of packets), as shown in 
Figures 6 and 7. This is due to the queueing and processing time 
at the nodes. In the case of NC, the nodes have to wait and queue 
all the required packet from each generation and compute the 
GF(2) LNC operations before forwarding them, so the 
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processing time at the nodes is higher than the one taken by the 
traditional routing approach. Although more resilient to failure 
than the traditional approach, and besides the slight increase of 
decoding complexity, the most significant price to pay when 
using NC is latency. 

 

 

Figure 6 - Latency results for cases 1-9 for the network presented in section IV. 

 

 
Figure 7 - Jitter results for cases 1-9 for the network presented in section IV. 

 

A natural extension to this work would be the inclusion of 
error correction mechanisms. Testing other network scenarios, 
such as situations with node failures, would also be important 
to be studied. A more elaborate future extension would be the 
introduction of other agents such as an eavesdropper, who tries 
to decode some information from the network-coded packets. 
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