
Self-adapting Linear Network Coding Emulation

Nuno B. Coelho, Francisco A. Monteiro, Rui J. Lopes
Instituto de Telecomunicações

and
Dep. of Information Science and Technology, ISCTE - Instituto Universitário de Lisboa

Lisbon, Portugal
francisco.monteiro@lx.it.pt , rui.lopes@iscte-iul.pt

Abstract— Linear network coding (LNC) introduced a new
paradigm for routing data across networks where the transported
packets are not the original information packets but rather linear
combinations of the original packets. This is known to allow a
more efficient use of the network resources. With LNC based on
systematic network codes, the network’s capacity is chiefly defined
by the rank of the end-to-end equivalent transfer matrix. This
paper presents a network-layer emulator based on the object-
oriented programming paradigm, which allows, for any network
topology, to have the network’s capacity self-optimized by
adapting the coding operations performed at each node,
depending on the impact the changes have on the global rank of
the global transfer matrix, and on a metric related to the use of
network’s resources.

Keywords— Linear network coding; Software defined networks,
Network resilience; Rank metric; Java emulation.

I. INTRODUCTION

Network coding (NC) was first presented as a method for
error correction in [1], which is deemed to be the first paper on
the topic. It was then shown how NC allows transmitting more
information across a network in comparison to traditional
routing [2]. In general, a well-designed NC method guarantees
both an efficient use of the network’s resources and robust end-
to-end connections in case of link failures [3].

Both wireless and wired packet-based network may have
different topologies and different types of nodes [3] [4], but are
usually capable of establishing several different paths between
the source and destination nodes by setting different connections
at intermediate nodes. These intermediate nodes may be
responsible for making their own forwarding decisions, based
on the global or local knowledge they have of the network, or
they can be controlled by some central network manager. This
latter approach has gained relevance in the context of software
defined networks (SDN). The overall transfer matrix of the
network can be known, corresponding to the so-called coherent
model or unknown even to a central processor, called the non-
coherent model (see, e.g., Kschischang’s preface in [5]).

In the most common case of binary linear NC (LNC), the
intermediate nodes always combine the packets from different
sources by applying XOR functions to sets of packets. Research
on fundamentals and applications of binary and non-binary
network coding has been mounting and recent comprehensive
results and surveys can be found in [5] [6]. It should be noted

that NC ideas are not limited to the packet transmission layer
and its core idea have also been extended to the physical layer
of wireless networks (e.g., [7] [8]).

The work presented in this paper was initially inspired by the
the protection scheme for multi-hop wireless networks proposed
in [9]. That protection scheme was tested with one and two
intermediate node failures and quantified the quality of service
(QoS) by means of parameters such as packet loss ratio (PLR)
and latency. In [10], the authors used NC to introduce a
protection scheme against single and multiple link failures,
recovering a second copy of each data unit transmitted
“automatically” without rerouting data or without failure
detection. In [11], the authors proposed a general method to
design the transmission protocol with binary physical-layer
network coding (PLNC). They examined several proposed
protocols in terms of energy consumption, error rate, and
throughput performance and decoding strategy.

This paper presents a LNC emulator which allows the study
and assessment of different LNC strategies, different network
types (either wired or wireless), under any topology specified by
the user. The QoS metrics considered in the analysis are the PLR
and latency. The main contributions of this work are its
grounding on fundamental properties of NC (e.g., verification of
conditions for viability); and on the other hand its flexibility
(e.g., the coding coefficients can be computed by the emulator
or provided by the user and obtained via any other means). This
emulator was developed using multiple threads in Java and
provides a more flexible alternative to other simulators such as
the one in [12] (written in Python) or the one in [13] (written in
C++). The presented emulator allows simulating network coding
with any defined network topology and implements a self-
adaptation mechanism for the network coding operation carried
at the nodes. The emulator was tested with the same cases
analyzed in [9].

The paper is organized as follows. The next section
introduces LNC in packet networks. Section III describes the
developed emulator and its a priori requirements. Section IV
describes the network topology considered. Section V describes
the operations held at the different nodes to combine the
incoming packets. Section VI shows how a viable network
coded network is always guaranteed after the self-adaptation
process of the network codes that take place at each node. In
Section VII a central control unit is added (a “genie” or
“genius”). Section VIII presents results obtained with the
network emulator, as well as the conclusions.

II. A BRIEF INTRODUCTION TO LINEAR NETWORK CODING

LNC increases the throughput of a network from a source
node to a destination node due to a more efficient use of the
several physical paths between them. Additionally, the
robustness to packet losses and link failures is increased given
that the information packets that did not arrive at their
destination can be inferred from the linear combinations of the
coded packets that have arrived. Also, LNC brings more security
and complexity to the network [14]. However, the use of LNC
requires transmitting additional information along with the
messages, notably the information of which packets have been
combined to form each coded packet [15]. When doing this,
there is no need to store additional information in the nodes of
the network. This extra information can be easily placed in
packet headers, which in this paper are called “transfer vectors”.
The existence of headers is common in standard protocols like
the TCP protocol [16].

A. Operations in LNC and coded packet structure

In LNC the operations at the nodes are constrained to be
linear over a finite integer field with q symbols in the alphabet,
i.e., a Galois field denoted as �� or GF(q) [17], [4], [5]. In this
work a binary field is considered, and therefore both the
transmitted packets and the coefficients of the linear
combinations are taken from GF(2). All operations (namely
addition, division, multiplication, subtraction, and Gauss-Jordan
elimination) are defined over GF(2) [11] [18].

Of chief practical importance is the structure of the packets
that are exchanged between nodes, and how they convey both
the coded packets (in the payload) and the control information
about how the packets have been coded. That is, packets arriving
at the ��� input of node N result from the concatenation of a

transfer row vector, ��,�
 (��)

, and its corresponding coded packet,

��,�
(��)

, having the format ���,�
 (��)

���,�
(��)

�. One of the fundamental

processes of LNC is expressed by ���,�
 (��)

���,�
(��)

� =

���,�
 (��)

���,�
 (��)

���, where �� is a matrix having in its rows the

original source packets. Naturally, the number of columns in

��,�
 (��)

 must match the number of rows in ��. The stacking of all

row vectors ��,�
 (��)

 (i.e., the transfer vectors) creates matrix

 ��
(��)

, and the stacking of the row vectors ��,�
(��)

 (i.e., the coded

packets arriving at node N) generate matrix ��
(��)

.

At each node one has packets in ��, which correspond to a
burst or “generation”. Both the size of the packets (number of
columns in ��), and the size of each “generation” (number of
rows in ��) are system parameters. It should be noted that a row

vector ��,�
 (��)

 describes “the memory” of all the linear operations

performed at each visited node and that transformed the original
source packets into the coded packet arriving at the ��� input of
node N. In fact, this is a direct result of using systematic network
codes [19], hence, the left part (control information) of the
packet tracks its previous path and directly reveals what is being
combined in the coded message part of the packet (payload).

Similarly, at the output of the ��� output of node N one will
find packets of the form:

���,�
 (���)

���,�
(���)

� = ���,�
 (���)

���,�
 (���)

���()

B. Types of Nodes

One now describes how the different elements in a network
process coded packets, starting with the intermediate nodes – or
simply network nodes (typically routers if the network layer is
considered). In traditional packet networks, the role of an
intermediate node is to forward received packets to another node
“closer” to the destination. With NC, the intermediate node
firstly encodes received packets and later forwards the coded
packets to another node “closer” to the destination.

Similarly to what has been expressed for the input, at the

output of node N, one can build the transfer matrix ��
(���)

, as

well as matrix ��
(���)

 with the set of output packets stacked as
the rows of this matrix after a new coding operation is performed
at that node. In matrix form, the operations performed at each
node N are described by

���
(���)

���
(���)

� = �� ���
(��)

� ��
(��)

�

where �� is the connection matrix of node N, which describes
the coding (or combining) process performed at that
intermediate node. Note that after the coding takes place at a

node, one has the output transfer matrix ��
(���)

= �� ��
(��)

 and

the new set of vectors ��
(���)

= �� ��
(��)

= �� (��
(��)

��). The

last equality denotes the fact that the header ��
(��)

 contains the
information of the accumulated network coding operations that
the arrived packets went through from the source until the
present node to which they are arriving. Moreover, the columns
of �� are associated to the node’s logical inputs and the rows are
associated to the node’s logical outputs. The inputs and outputs
considered at each node do not have to correspond necessarily
to physical inputs or outputs. Actually, by considering logical
inputs and outputs enables that coded packets can be sent over
physical links at different rates. The practical implementation of
such virtual inputs and outputs is discussed in section VIII.

Let us now consider a simple example where �� describes
the LNC processing at node with three logical inputs and two

logical outputs with �� = �
1 1 1
1 0 1

� over ��. With some

simplification of the notation, assume that a node N received
from source si, at each of its three inputs, packets x1 = [11100],
x2 = [00111] and x3 = [10101] with transfer vectors hx1=[100],
hx2=[010] and hx3=[001] respectively (note that this set of
headers is the particular case that always happens at the first
node of a path), all belonging to the same burst or to the same
“generation”. In particular, the header of the second combined
packet output becomes:

 ��,�
(���)

=[hx1(1)⊕hx3(1) , hx1(2)⊕hx3(2), hx1(3) ⊕ hx3(3)] ()

and, in general

��
(���)

= �� ��
(��)

= �
1 1 1
1 0 1

� �
1 0 0
0 1 0
0 0 1

� = �
1 1 1
1 0 1

� ()

��
(���)

= �� ��
(��)

= �
1 1 1
1 0 1

� �
1 1 1 0 0
0 0 1 1 1
1 0 1 0 1

�

 = �
0 1 1 1 0
0 1 0 0 1

� . ()

On the other hand, source nodes will be responsible for
generating and sending messages to a certain destination in the
network. To send those messages the source node typically
cannot send the packets directly to the destination, which is a
situation that happens quite frequently in upload scenarios. To
encode the packets, the source node uses linear independent
vectors (also called a linear lifting [3], [20]). If the source s
wants to send packets p1, p2 and p3 over ��, the initially
transmitted packets can be stacked and create

�� = [��|�] = �
1 0 0
0 1 0
0 0 1

�

��

��

��

�,()

where the transfer matrix at the source is the identity matrix (c.f.
the previously given example).

Finally, the destination node is responsible for decoding
received packets, as described in Algorithm 1. A fundamental
fact influencing the reliability of the system is that in order for
the destination to be able to decode the set of packets that arrive
to it the rank of the global transfer matrix needs to be equal or
larger than the number of source packets in one particular
generation. At the destination one will have to infer the original
source packets � from the end-to-end relation between the
original packets � and coded packets Y that arrived at the
destination, described by the global transfer matrix H, i.e., one
has to solve, over GF(2), the system � = �� for the P matrix.
This involves performing one matrix inversion over GF(2) at the
destination d:

���
(��)

�
��

���
(��)

� ��
(��)

�()

Algorithm 1: Algorithm at the destination when receiving a new packet

input: Packet : ∀p ∈ Packet
(any network packet)

input: Link : ∀l ∈ Link
(input link associated to the node)

inBuffers : the node list of in buffers
out ← ∅
add packet p to buffer of link l
for_each b of inBuffers do

for_each p2 packet of b do
if there is a bucket created for p2 source
node, with p2 generation number and p2 destiny
node then

if b increases rank then
add p2 to b

end
 else

create new bucket for p2
end

end
end

It becomes clear from both the last expression and from
Algorithm I that the rank of the matrix to be inverted is of capital
importance for a successful decoding, and thus to make a
decision about the viability of the network structure and
connection matrices. This will be explored further in section VI,
where a process for designing LNC viable networks is described.

III. NETWORK EMULATION

Based on the concepts laid out in the previous section, an
emulator was developed in Java (named “Net Genius”) using the
object-oriented paradigm. In the emulator each node in the
network has the same processing functionalities and reacts to
inputs, with all nodes working in parallel, emulating the routing
of data by means of multiple threads. Each node is thus emulated
by a thread and each thread is independent from the others. The
emulator has two operating modes: a basic mode and an
advanced mode.

In the basic mode, the network structure and the operation at
each node occurs according to the defined physical and logical
links and predefined connection matrices, whether set manually
or loaded from a preset configuration. Each node is only aware
of neighbor nodes to which it is connected to, corresponding to
a decentralized network. In this mode via probing packets it is
also possible to check if packets can be decoded (that is, the
network viability).

Conversely, in the advanced mode, only the network
structure is predefined, the operation at each node, i.e. its
connection matrix, is centrally defined by a system entity (a
“genie” or “genius”) that controls the network.

A. Flexible Emulation of NC

The emulator was made flexible enough to either implement
traditional routing or NC. The user only needs to define the
network topology, and then the linear model defined in the
previous section suffices to emulate the routing using NC. The
user has the option of defining the physical and logical links
between nodes either by manually configuring the network
nodes in the emulator setup or by using the emulator console’s
commands. The user can choose the number of nodes and how
they are connected. Alternatively, a pre-set configuration can be
chosen when a quick setup of the emulator is needed. The
network is distributed and operates depending on the physical
connections, whether it is a manual configuration or a pre-set
configuration. Unlike the emulators in [12] and [13], the
presented emulator allows the user to define the coding matrixes
are each node, as one would expect in a truly SDN context. For
example in [12] the coefficients are sampled from a uniform
distribution. The emulator then checks if the defined network
topology and the NC operations lead to a viable network, by
checking the rank of the end-to-end transfer matrix.

B. Emulation of the different nodes

In the following, one describes how the different nodes in of
a LNC enabled network were emulated by means of a running
example. Assume that packet p, belonging to the second
generation of source s, arrives at destination node g. When g
receives the packet, it will check if there is a bucket created for
that generation and source. If that bucket is already created, p
will be added to the existing bucket only if it “adds value” to the
existing bucket, i.e., if the bucket rank increases or reaches the
desired rank. Each node will have several buckets that will store
the packets of different sources or generation.

In the example in Figure 1, the intermediate node r1 is
connected to two sources and to three other intermediate nodes;
it has two IN buffers to store the received packets and three OUT
buffers to store the computed packets to be sent.

Figure 1 - Buffers of the intermediate node.

C. Packet structure

The packed packet structure proposed and used in the
emulator is shown in Figure 2. This structure enables the linear
model presented in Section II to be implemented in real network.
The fields in the packer header contain control information that
is needed for coding and decoding the network-coded data field,
which is the message itself.

Figure 2 - Packet structure.

The ID of the packet is composed of the node ID and a
sequential number. For example, when a packet is produced at
the source s1, its ID will be “s1n” where n is a sequence number
within a certain generation from that source node. The
generation ID identifies the generation number of the packet and
this generation number is associated with the burst size (also
named the “generation size”). For example, in a burst of size
four, there will be four packets belonging to the same generation.
The source ID and destination ID fields respectively contain the
source identifier and the destination identifier. These fields are
important so that network nodes may correctly encode and
decode the packets and forwarding the packets. Only two values
can be assigned to the type field: [INFORMATION,
PROBING]. These values indicate if a packet contains
information (data packets), or if it is one of the so-called
“probing packets” that are used to validate the NC transmission,
i.e., to check whether the messages can be correctly decoded.

IV. PRESET NETWORK TOPOLOGY

Hereafter one assumes the particular case of the network
depicted in Figure 3, with one source node, six intermediate
nodes and one destination (or terminal), which corresponds to
the preset network present in the emulator. Assume that node r1
receives packets p1, p2, p3 and p4 from s1. The transfer vectors
(in ��) are [100], [011], [101], and [110] respectively. and
therefore, the transfer matrix of r1 is

Figure 3 - Network model.

� = �

 1 0 0
 0 1 1
 1 0 1
 1 1 0

�. ()

In order to correctly decode the packets received, r1 cannot
have a rank deficient H matrix, i.e., it must receive a minimum
of m linearly independent transfer vectors from each generation
[18], where m corresponds to the number of packets of a
generation, i.e., the burst size. In this example, the source s1
sends three packets and destination r1 receives four packets. The
required rank of H, so that r1 is able to correctly decode the
source packets, is 3 (as 3 packets have been coded and sent).

V. CODING AND DECODING

The version of the described emulator only combines
packets originating from the same source node. The idea of
combining information from different sources would pose a
number of challenges for buffer management, however this
proposal does not undermine the extension of this LNC process
to the more general scenario. Note that instead of having a fixed
transfer matrix H, the intermediate nodes and the destination
nodes have a dynamic H matrix. Each packet carries a transfer
vector in the packet header and this transfer vector becomes a
row of H at each intermediate node. At each output i of a node,
one gets a linear combination of packets received by that node,
defined by the i-th row of the connection matrix C. Only packets
with the same generation number and from the same source are
encoded together. In the example in Figure 4, r3 will always
combine packets from r1 and r2 and send the encoded packet to
r4 and r5. In the general case instead of r3 having just one
connection matrix, there will be n connection matrices, where n
is the number of source nodes that are connected to the node.

Without any loss of generality, we assume in the remainder
of this paper that there is only one source. As one may see in
Figure 4, what is sent to r4 differs from what is sent to r5. The
intermediate node r4 will receive packet x3 (which in the
example is in fact the same as x2), and r5 will receive x4=x1⊕ x2.
It should be highlighted that the inputs and outputs are the
logical links connected to the node and not physical links.
Considering that two physical links exist, one with capacity C
and another with capacity 2C, from the NC perspective one
accounts for the existence of three logical links. Initially all the
elements of C are set to 1, that is, by default all the outputs of a
node replicate the XOR of all the received packets by that node.

Figure 4 - Connection matrices of node r3.

VI. RANK METRIC FOR A VIABLE NETWORK

When a user sets up a determined configuration, by manually
configuring the network physical or logical communication
links and choosing the basic mode, one needs to guarantee that
the network is viable, i.e., that it guarantees a certain level of
reliability under certain network conditions. In our emulator this
process is based on the exchange of probe packets and
verification of a set of criteria. Probe packets are forwarded at
each node according to connection matrix C. The two criteria
that must be satisfied are:

1. Connection criterion: each destination node must be
connected to at least one source node (this criterion
guarantees that at least one probe packet will be received
by each destination node);

2. Linear independence criterion: each destination node
must have an H matrix whose rank is equal or greater
than the burst size (i.e., the size of the generation).

To guarantee that the first criterion is verified, the recursive
Algorithm 2 was created. This algorithm ensures that every
destination node is connected to at least one source node, by
recursively checking if a network node is connected to source
node. This procedure is applied by all destination nodes of the
network. If a destination has zero connections to a source node,
the user is notified and the same happens if all destination nodes
have zero connections to a source node. In short, the algorithm
starts from a destination node and searches through the
connected links for source nodes, ensuring that the destination is
connected to at least one source node. A node that is not
physically connected to another node has a null matrix as a
connection matrix, i.e., C = []. So, the algorithm can perform
this verification recursively throughout the connection matrices.

Algorithm 3 ensures the second viability criterion. To that
end, at the beginning of the emulation probing packets are sent
with the objective of checking if the network is viable in terms
of correctly decoding the message sent by the source node.
When the destination receives all the probing packets it will
check if the transfer matrix reaches the desired rank, i.e., if is not
rank deficient. Note that the minimum desired rank of H is equal
to the burst size (i.e., the size of the generation).

Algorithm 2: Recursive algorithm for checking node connection extreme-to-
extreme.

checkSourcesConnectivity()
inBuffers : the node list of in buffers
out ← ∅
for_each b of inBuffers do

get node n from the link of b
find recursively a source node coming from b,
searching on n (findSource method)

end
__
findSource (Node n, Buffer b)

sourcesFound: an temporary list of source nodes
 found in the node
input: Node : ∀n ∈ Node

 (any existing type of network node)
input: Buffer : ∀b ∈ Buffer

 (any buffer)
out ← ∅
for each b of inBuffers do

if n is an intermediate node then
for_each link of node n do

get node n2 from link of b
if n2 is not n then

if n2 is a source node then
adds n2 to the sources found

else
find recursively a source node
coming from b, searching on n2

end
end

end
else if n is a source node then

add n2 to the sources found
end
end

end

Algorithm 3: Algorithm for checking linear system independence.

input: Bucket : ∀b ∈ Bucket
 (any bucket)
out ← ∅
get matrix H from the transfer vectors inside the
packets of b
define integer desiredRank as the burst size of b
if rank of H is less then the desiredRank then
 notify user that the network is rank deficient
 stop emulation
else
 enable the emulation
end

VII. SELF-ADAPTATION OF NETWORK CODING

In the advanced mode there is an entity (called “genius”) that
has full knowledge of the network. This means that the process
of checking the required linear independence is done quicker
than in the basic mode, because there is no need for sending the
probing packets. In fact, in advanced mode, the genius does
more than checking linear independence. Instead of only
checking if the system is linearly independent as in the basic
mode, the genius attempts to gradually improve the network by
changing the appropriate connection matrices. By knowing all
connection matrices from all intermediate nodes and the

source’s H matrix, the genius is capable of computing all
matrices in order to get the H matrix of the destination nodes.
The genius uses a recursive algorithm to test and change several
combinations of the network physical connections. Each time
the user starts the emulation for the same network, the genius
will execute this algorithm, so that the network’s configuration
may change; this allows the user to test the network with
different configurations until the genius finds the best possible
configuration. In order for the genius to accept a new
configuration, that particular configuration must have a better
rating than the last saved configuration. The configuration
rating, defined as CRa, is the acceptance criteria considered, and
is calculated in the following manner:

��� = �� ×
������ ����

��� ����
 + �� ×

������ ����

��� ����
  ()

This algorithm is based on the weights �� and �� ,
corresponding to the overall matrix rank and to a network
resources’ cost. The latter is the total number of links within the
network, i.e., the number of links that are being used by all nodes
(each link connects two nodes). The former is the metric that
assures that packet decoding is possible at the destination node.
By considering these two metrics, one obtains a fitness function
that can be used by different methods to set the connection
matrices and thus build a self-adapting network (e.g., simulated
annealing, or gradient descent methods). Packet loss is important
in scenarios where LNC is used for improving the network
reliability. In order to assess LNC configurations in scenarios
with packet losses the user has the option of choosing the link
error probability for each emulation, independently of the
emulation mode. Being Pk the packet loss probability in all the
links, and s the number of jumps (hops) between the source and
the destination along a certain path, the packet loss probability,
Pe, over that path, is given by ��=1 − (1 − ��)�. In the
examples of Section VIII one considers scenarios with three
different values for the packet loss probability, Pk: no packet
loss, 2% and 10%.

VIII. EXAMPLE RESULTS AND CONCLUSIONS

In each emulation and for each node, the emulator presents
the number of buckets expired, the number of buckets computed,
the number of packets received, and the number of packets sent.
In the following are presented, for each source, the number of
packets sent and the number of generations. Nice different cases
were emulated for the network, and are listed in Figure 3. The
coding method and the packed loss probability (Pk) used in each
case are listed in Table I. In all cases �� and �� were set to 0.7
and 0.3, respectively. In order to assess the performance of each
case, one uses the packet loss ratio (PLR) and a latency metric.
PLR corresponds to the ratio of total number of packets
successfully received at the destination node over the total
number of packets sent by all sources. Latency is calculated as
the maximum sum of the accumulated propagation delay,
switching delay, and transmission delay over all the paths
between source and destination.

TABLE I – Emulated scenarios.

Case Method Pk
1 No LNC 0 %
2 No LNC 2 %
3 No LNC 10 %
4 Distributed LNC 0 %
5 Distributed LNC 2 %
6 Distributed LNC 10 %
7 Centralized LNC 0 %
8 Centralized LNC 2 %
9 Centralized LNC 10 %

Figure 5 - PLR results for cases 1-9 for the network presented in section IV.

Figure 5 shows the results of PLR for the emulation of the
network presented in Figure 3. In the cases with NC, the PLR is
always below 40%. When there are no errors in the links, the
PLR is consequently zero (overlapping curves at the bottom of
the graph), and it increases for larger error probabilities. In these
cases of non-zero link error probabilities, the traditional
approach presents worst PLR results than NC. This was to be
expected given that in NC, when a packet is lost, the information
may be recovered from a set of linear combinations of native
packets. This contrasts with the traditional approach where there
are no coded packets, and therefore, when a packet is lost, there
is no way of recovering that packet unless it is retransmitted.

Between centralized and distributed LNC one cannot find
significant differences in the results in Figure 5 (although with
higher error probabilities in the links the centralized approach
was seen to perform slight better). The paper shows that lossy-
networks benefit from a network coding approach due to the
resilience provided by the linear combinations of packets. In
spite of a higher implementation complexity, the centralized
network coding approach is the one that achieves the best QoS
metrics in all the emulated scenarios. It was also seen in the
emulation results that NC performs worse than the traditional
routing in terms of latency and jitter (defined as the maximum
variation between the arrival time of packets), as shown in
Figures 6 and 7. This is due to the queueing and processing time
at the nodes. In the case of NC, the nodes have to wait and queue
all the required packet from each generation and compute the
GF(2) LNC operations before forwarding them, so the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 64 128 256 512 1024

P
L

R

Data rate (kbps)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Case 9

processing time at the nodes is higher than the one taken by the
traditional routing approach. Although more resilient to failure
than the traditional approach, and besides the slight increase of
decoding complexity, the most significant price to pay when
using NC is latency.

Figure 6 - Latency results for cases 1-9 for the network presented in section IV.

Figure 7 - Jitter results for cases 1-9 for the network presented in section IV.

A natural extension to this work would be the inclusion of
error correction mechanisms. Testing other network scenarios,
such as situations with node failures, would also be important
to be studied. A more elaborate future extension would be the
introduction of other agents such as an eavesdropper, who tries
to decode some information from the network-coded packets.

ACKNOWLEDGMENT

This work was funded by FCT (Foundation for Science and
Technology) and Instituto de Telecomunicações under project
UID/EEA/50008/2019. Francisco Monteiro is also grateful to
the opportunities granted by the European COST Action IC1104
“Random Network Coding and Designs over GF(q)”.

REFERENCES

[1] N. Cai and R. W. Yeung, "Network coding and error correction," IEEE
Information Theory Workshop, 20-25 Oct Bangalore, India, 2002.

[2] R. Ahlswede, N. Cai and S.-Y. R. Li, "Network information flow," IEEE
Transactions on Information Theory, vol. 46, pp. 1204-1216, 2000.

[3] K. A. Agha, Network Coding, John Wiley & Sons, Inc, 2012.

[4] Y. Qin, Network Coding at Different Layers in Wireless Networks,
Germany: Springer, 2016.

[5] M. Greferath, M. Pavčević, N. Silberstein and M. Vázquez-Castro,
Network Coding and Subspace Designs, Springer, 2018.

[6] F. A. Monteiro, A. Burr, I. Chatzigeorgiou, C. Hollanti, I. Krikidis, H.
Seferoglu and V. Skachek, Special issue on network coding, Springer,
2017, pp. DOI 10.1186/s13634-017-0463-2.

[7] Katti, S; Rahul, H; Hu, W; Katabi, D; Medard, M; Crowcroft, J., "XORs
in the air: practical wireless network coding," Pisa, Italy, October 2006.

[8] J. S. Lemos, F. A. Monteiro, I. Sousa and F. E. Ferreira, "Efficient
message exchange protocols exploiting state-of-the-art PHY layer,"
EURASIP Journal on Wireless Communications and Networking, no.
2017:92, pp. DOI 10.1186/s13638-017-0850-2, May 2017.

[9] B. Saeed, P. Rengaraju, C. Lung, T. Kunz and A. Srinivasan, "QoS and
protection of wireless relay nodes failure using network coding," in Proc
of International Symposium on Network Coding (NetCod), Beijing,
China, 2011.

[10] A. Kamal, A. Ramamoorthy, L. Long and S. Li, "Overlay protection
against link failures using network coding," IEEE/ACM Transactions on
Networking, vol. 19, no. 4, pp. 1071-1084, 2011.

[11] R. Chang, S.-J. Lin and W.-H. Chung, "Transmission protocol design for
binary physical network coded multi-way relay networks," in IEEE 79th
Vehicular Technology Conference (VTC Spring), Seoul, Korea, May,
2014.

[12] D. Ferreira, L. L. Lima and J. Barros, "NECO: NEtwork COding
Simulator," in Proc Inter. Conf. on Simulation Tools and Techniques for
Communications, Networks and Systems (SIMUTOOLS), Rome, Italy,
March, 2009.

[13] N. Marcano, M. V. Pedersen, P. Vingelmann, J. Heid, D. E. Lucani e F.
Fitzek, “Getting Kodo: Network Coding for the ns-3 Simulator
(WSN3),” em 2016 ACM Workshop on ns-3, Seattle, WA, USA, 2016.

[14] C. Fragouli and E. Soljanin, "Introduction," in Network Coding
Fundamentals, Foundation and Trends® in Networking, 2007, pp. 1-9.

[15] M. Médard and A. Springtson, "Linear network coding," in Network
Coding: Fundamentals and Applications, Waltham, MA, Academic
Press, 2011.

[16] J. Sundararajan, D. Shah, M. Médard, M. Mitzenmacher and J. Barros,
"Network coding meets TCP," in Proc. of IEEE INFOCOM, Rio de
Janeiro, Brazil, 2009.

[17] T. Ho and D. S. Lun, Network Coding: An Introduction, Cambridge
University Press, 2008.

[18] J. Heide, M. V. Pedersen, F. H. Fitzek and M. Médard, "On code
parameters and coding vector representation for practical RLNC," in
Proc. of IEEE Inter. Conf. on Comm. (ICC), Kyoto, Japan, 2011.

[19] A. Jones, I. Chatzigeorgiou and A. Tassi, "Binary systematic network
coding for progressive packet decoding," in Proc. of IEEE Inter. Conf.
on Communications (ICC), London, UK, 2015.

[20] M. Bossert e E. M. Gabidulin, “One family of algebraic codes for
network coding,” em Proc. IEEE International Symposium on
Information Theory, Seoul, Korea, June, 2009.

9.0

10.0

11.0

12.0

13.0

14.0

15.0

 64 128 256 512 1024

L
a

te
n

c
y
 (

m
s
)

Data rate (kbps)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Case 9

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

 64 128 256 512 1024

J
it
te

r
(m

s
)

Data rate (kbps)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Case 9

