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Abstract— In general, lattice problems are simple to describe but 

rather hard to solve optimally. Several suboptimal solutions have 

been proposed for the closest vector problem (CVP), which is 

central in multiple-input multiple-output (MIMO) 

communication systems. It is known that some lattices have a 

trellis representation, however, those lattices require very 

particular geometries that are not found in lattices randomly 

generated.  In this paper we show that for the typical number of 

dimensions used in MIMO communication, with high 

probability, there exists a synthetic lattice that is a member of the 

family of lattices that have a trellis representation and which is 

sufficiently close to any given random lattice. For that purpose 

we present a method to find a trellis-oriented basis for a given 

random lattice. The basis vectors of the synthetic lattice and the 

basis vectors of the original lattice are close and for finite 

alphabets the two lattices are roughly the same in the region of 

interest. Therefore, the optimal decision (Voronoi) regions of 

both lattices chiefly overlap. A linear transformation then focuses 

the original lattice onto the synthetic one, known to have a trellis 

representation. This minimizes the distortion of the Voronoi 

regions associated with maximum-likelihood detection and 

therefore the performance attained in the MIMO-CVP is close to 

optimal.  

 

Keywords: Lattices with trellis, quotient group, rectangular 

sublattices, cosets, closest vector problem. 

I. INTRODUCTION 

The regularity of a lattice lends itself for the representation 

of problems where signals are interpreted as a point in a 

multidimensional space defined in some basis. One of the 

most important lattice problems is the closest vector problem 

(CVP) [1], which consists in finding the point that is the one at 

the shortest distance from a given off-lattice target point. 

Forney’s pioneering work [2] showed that some lattices can 

be described by a trellis, where each segment of the trellis is 

associated with the coordinates of the lattice points in each 

dimension of the space. The lattices for which a trellis exists, 

can be said to constitute a family of lattices, denoted by LR. 

These properties have been used in coding theory for 

detecting lattice codes [3]. However, this approach requires a 

rather restricted type of lattice allowing a trellis representation. 

Some well known lattices belong to LR (such as A2, D4, E8, or 

the Leech lattice in R
24) [4] but others are constructed 

imposing a specific geometrical structure during the design of 

the code. Maximum likelihood detection (MLD) can in those 

cases be attained through trellis detection, and therefore the 

CVP is in those cases solved with the Viterbi algorithm. This 

circumvents the exponential complexity of MLD (measuring 

the distance from the given point to all the points in the lattice). 

The complex lattice associated with a MIMO link with NT 

transmit antennas and a M-QAM modulation will have T
N

M  

complex points within its border. 

Clearly, the trellis detection approach cannot be extended to 

any random lattice. However, one should ask the question, for 

any given lattice, can one find a lattice that is sufficiently 

“similar” or “close” to it, and yet is simultaneously a member 

of the family of lattices with a trellis representation, LR. This 

paper deals with that question. As lattices are defined by 

generator matrices, the problem can be seen as a matrix 

nearness problem [5]; as in many other matrix nearness 

problems, the one we formulate also does not seem to have an 

analytical solution and therefore we take an algorithmic 

approach. To the best of our knowledge the approximation of 

a random lattice by a lattice in LR is a new approach to MIMO 

detection. In [6] the authors use a trellis detector but their 

approach is clearly sub-optimal, as it is based on a 

transformation of a tree data structure (associated with a 

sphere decoder) into a trellis data structure, and ends up losing 

many of the branches. 

In MIMO, one has to detect a vector x  from a real vector 

y obtained after a channel H  and perturbed by the additive 

noise vector n , that is, = +y Hx n . 

In this paper we derive the property that makes a lattice a 

member of LR and presents an algorithm to find such a lattice 

which is “nearby” a given random lattice. Then the paper 

presents results for typical detection in MIMO spatial 

multiplexing, comparing the results with the most important 

sub-optimal receivers and MLD. 

II. LATTICES 

Lattices are discrete subgroups in 
nℂ . The most common 

manner to specify a lattice Λ  is based on on a set of vectors 
which are the columns of a generator matrix H : 

 
1

: ,
n

n

i i i
i

x x
=

    Λ = ∈ = = ⋅ ∈ 
    

∑y y h H xℂ ℤ . (1) 

The coordinates of the lattice points are thus integer 

combinations of the columns of the complex generator matrix 

H  (some authors prefer to span the row space though). 
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Hereafter, we assume a real-valued model, obtained by 

stacking the real and imaginary components of the equivalent 

model of complex lattices as described, e.g., in [7]. 

The dual lattice of a real primal lattice is generated by the 

dual basis 
( ) 1( )D T−=H H and 1vol( ) (vol( ))

D

−Λ = Λ  [8]. 

The region of space whose points are closer to the origin 

than to any other point of the lattice is called the Voronoi 

region. This is the most interesting fundamental region amid 

the infinite number of other possible tilings of the space. 

III. FOCUSING ONTO THE LR FAMILY 

We call M the set of all possible lattices in 
nℝ . Hence, 

n
Z  is just one particular lattice in M (see Figure 1). 

Moreover, all lattices with a trellis representation are also 

members of that M  and we say that they constitute the LR 

family of lattices. 

It is well known that the simplest way of solving the CVP 

amounts to the least-squares solution given by the Moore-

Penrose pseudo-inverse of the generator matrix. In the MIMO 

context this is known as the zero-forcing (ZF) solution. 

Geometrically, this type of linear receiver applies a linear 

transformation that takes the received lattice Λ  and 

transforms it back into the original 
n
Z . We will call this 

procedure a focusing of the received lattice Λ  onto 
n
Z , and 

we propose to generalize this concept of focusing by means of 

a linear transformation F. The ZF focusing approach presents 

the lowest complexity among all sub-optimal receivers but 

also results in the poorest performance (in terms of erroneous 

decisions). The poor performance is a direct consequence of 

the potentially huge mismatch between the optimal decision 

regions in MLD and the decision regions associated with 

focusing onto 
n
Z . These decision regions are nothing but 

linear transformations of n-dimensional hypercubes. Note that 

the convenience of the ZF receiver comes from the fact that 

the destination lattice is 
n
Z , which allows detection by means 

of a simple slicer. 

We argue that it is possible to perform a linear 

transformation from any received lattice Λ  onto other lattices 

in M which also lend themselves to another convenient 

detection method, namely, the Viterbi algorithm.  Figure 1 

depicts the set of all lattices, including the particular LR family. 

Any given lattice may be closer to one lattice in LR than to 
n
Z , as those are infinitely many more. Again, notice that ZF 

would focus any received lattice always onto  
n
Z , regardless 

the distance to it. 

 

 
Figure 1. The set of lattices and the focusing operator. A received lattice Λ  

can be focused onto the nearest member of LR or onto 
nℤ . 

When the distance between lattices is reduced, then the 

matching (or coverage [7]) between their decision regions is 

maximized, which minimizes the distortion created by linearly 

transforming one lattice onto another one. If there is a member 

of LR nearby Λ  (i.e. very “similar” to  Λ ), then i) its MLD 

regions will mach closely the ones of the original lattice and ii) 

the distortion involved in the focusing  operation will be small. 

IV. THE LR FAMILY OF LATTICES 

A lattice has a trellis if it can be written as the union of a 

rectangular sublattice 
R

Λ  and translated versions of it. As 

noticed by Forney  [2], such a lattice is given by Λ =ΛR + 

[Λ/ΛR], where [Λ/ΛR] is a “system of coset representatives” for 

the cosets of ΛR in Λ or, equivalently, for the elements of the 

quotient group  Λ/ΛR. As ΛR is a rectangular lattice, by 

definition it can be expressed by a Cartesian product, i.e., 

1R n
r rΛ = × ×ℤ ⋯ ℤ . 

 

 
 (a) Rectangular sub-lattice in a lattice that has a trellis representation. 

 

 
 

(b) Trellis of the 2D lattice. 

Figure 2. A rectangular sub-lattice in a random lattice and the trellis 

representation of the lattice. 
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Figure 2 shows an example of a lattice in 
2
Z  and its 

representation by a trellis. It is possible to observe the 

rectangular quotient group and its translated versions.The 

lattice is then the union of the cosets of ΛR in Λ . For the case 

in Figure 2 , the index of ΛR in Λ is |C|=|Λ/ΛR |=5. In general, 

 
det( )

det( )
RC

Λ
=

Λ
. (2) 

Using the origin as a representative of ΛR, the set 

constituted by the origin together with all the other points with 

coordinates (c1i, c2i), i=1,2....|C|, that are inside the central 

rectangular region are the coset representatives of the quotient 

group. The whole lattice can now be seen as a tiling of the 

space using that fundamental region. The coefficients 

1 2
, ,

n
r r r⋯  have now a simple geometrical interpretation as 

they define the lengths of the fundamental hyper-rectangle. 

There is a strong connection between the way the trellis of 

binary block codes and group codes are obtained from a 

trellis-oriented generator matrix [3], [9] , and how the trellis of 

a lattice is obtained from the basis of a lattice in 
R
L , [2], [10]. 

The n-dimensional orthogonal sublattice has its basis vectors 

along one-dimensional subspaces Wi, i=1,...,n.  From these we 

can define the sequence of spaces {0} ⊂ V0 ⊂V1 ⊂ ⋅⋅⋅ ⊂ Vn=
n
R and each Wi, is the 1-D orthogonal complement of Vi−1 to 

Vi. We denote the projections onto Vi and Wi respectively by Pi 

and the 
i
W
P  and define the intersection lattices 

i i
VΛ = Λ ∩  

and the one-dimensional lattices 
i
W i

WΛ = Λ ∩ . 

Using these definitions, the state space of a trellis of a 

lattice in the coordinate system 
1

{ }n
i i
W

=
 is 

1
( ) /
i
P Λ Λ  and the 

label group for the trellis branches is ( ) /
i i
W W
P Λ Λ  [11], [12] 

[13].  

V. ORTHOGONAL SUBLATTICES 

We are interested in finding what properties a generator 

matrix must have so that it generates a lattice Λ ∈LR . 

A. Properties of the generator matrix 

A lattice can only be written as in the form Λ =ΛR + [Λ/ΛR] 

if and only if it contains a rectangular sublattice. Given a 

lattice, to find if a rectangular sublattice in it is believed to be 

itself an NP-hard problem. Micciancio calls it the quasi 

orthogonal set problem [8] that we may appropriately call it 

the quasi orthogonal sublattice problem (QOSP). This 

problem deserved virtually no attention in the literature, 

apparently due to lack of applications. 

In addition to the problem of discovering a rectangular 

sublattice we add an additional constraint: we want to find the 

rectangular sublattice that minimizes the index number of the 

quotient group in order to minimize the number of trellis paths. 

The problem does not seem to have an analytical solution; 

consequently, we revert to an algorithmic approach. 

Let us consider a random rational lattice defined by a 

rational H  with entries hij=nij /dij and whose inverse is the 

rational matrix W=H−1 with entries pij /qij. For lattice points, 

because 1−=x H y  (no noise), one should force 
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 (3) 

for k ∈ Z . As ∈x Z , then 1 1
1

1 1

i

i i

p r
kr

q q
∈ ⇒ ∈ℤ ℤ and thus 

1 1i
q r , where 

1i
q r denotes that 

1i
q  divides r . Hence, 

 
( )1 11 21 1

lcm , , ,
n

r q q q= ⋯ , (4) 

where lcm stands for lowest common multiple. Applying the 

same reasoning to each dimension one gets the rule 

( )1 2
lcm , , ,

i i i ni
r q q q= ⋯ . Finally, we can interpret the 

property in terms of the columns of 
( )D
H , the generator matrix 

of the dual lattice (henceforth called the dual matrix).  In 

conclusion, the sublattice
R

Λ of 
R

Λ ∈ L  in the original system 

of coordinates is completely defined by the denominators 
ij
q  

of the dual lattice, so that 

 ( )1 2
lcm , , ,

i i i in
r q q q= ⋯ ,

 
1,2,i n= … . (5) 

B. Algorithm 

Given rule (5) for the dual matrix and noting that the lattice 

equivalence problem is untreatable [1], we reduce the problem 

to finding a similar lattice to the problem of finding a close (in 

the Frobenius sense) dual generator matrix. For that purpose, 

one starts by applying a QR decomposition to the dual matrix, 

reducing it to the upper triangular (u.t) form via a rigid 

rotation of the lattice,Q . To make the elements in this matrix 

shorter, we i) LLL-reduce this rotated dual lattice and then ii) 

find rational approximations for the matrix elements via a 

greedy algorithm. (Notice that the Diophantine approximation 

problem is itself a NP-hard problem, solvable by mapping it 

onto another CVP [14]). The algorithm finds an approximated 

(or synthetic) dual lattice: 

 ( )

11 12 1

1 1 1

22 2
( ) ( ) ( ) ( )

1 2 2 2

0

0 0 0

n

n
D D D D

n

nn

n

p p p

r r r

p p

r r

p

r

           = =             

H h h h

⋯

⋯
ɶ ⋯

⋮ ⋮ ⋱ ⋮

. (6) 
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ALGORITHM 1: SYNTHESIS OF A LATTICE IN LR 

Input: Generator H , Admissible numb. of paths Γ . 

Output: Approximation 
R

∈Hɶ L ; number of cosets |C|. 

 1: ( ) 1
red

, LLL{( ) }D T−←H M H ,  M unimodular 

 2: Sort columns by increasing norm 

 3: ( )( ) ( )
red red

, , sort( )D DQR←Q H J H
⌢

; J permutation, 
( )
red
DH
⌢

 u.t.
 

 
4: Do until C < Γ   

 5:  Obtain ( )
red
DHɶ : for each row i, obtain rational 

approximation of each 
ij
q using a common 

denominator 
i
r  and with maximum error δ 

 6:  ( )
red

, D←P R Hɶ  ; as in expression (8) 

 7:  
1

n

i
i

C p
=

=∏   

 8:  increment δ 

 9: end loop  

10: ( )( ) 1 1 1
red

( )
T

T D − − −= ⋅H Q H J Mɶ ɶ  

 

C. Geometrical interpretation: distortion vs number of cosets 

The number of cosets in a quotient group is  

 
( )
( ) ( )

( )1

1

Vol
det

detVol

n
n

R ii
i D

iR

r
r=

=

ΛΛ
= = = ⋅

Λ Λ

∏
∏ H

H

ɶ
ɶ

ɶ ɶ
. (7) 

In order to calculate det( )
D
Hɶ  one should observe that (6) 

is uniquely defined by two matrices: one is P , comprising the 

denominators of 
D
Hɶ , and the other we call R , with  the 

numerators of  
D
Hɶ , and both matrices are u.t.: 

 

11 12 1 1 1 1

22 21 2 2
0 0

and

0 0 0 0

n

nn n

p p p r r r

p p r r

p q

   
   
   
   = =   
   
   
      

P R

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

. (8) 

Note that the non-zero elements of R  in each row are 

forced to be equal.  The determinant of 
D
Hɶ  is then 

 ( )

 
1 1 1

product diagonal volume of
numerators quantization grid

1
det

n n n
ii

D ii
i i ii i

p
p

r r= = =

= = ⋅∏ ∏ ∏Hɶ  (9) 

and  (7) comes as 

 
1 1 1 1

1n n n n

i i i
i i i iR i

r p p
r= = = =

Λ
= ⋅ ⋅ =

Λ
∏ ∏ ∏ ∏

ɶ
. (10) 

The number of cosets is thus solely determined by diag( )P . 

Geometrical insight into the problem can now be given from: 

( )
( )

( ) ( )
Vol

Vol Vol
Vol

R

R D

R

ΛΛ
= = Λ Λ

Λ Λ
ɶ

ɶ
 

 

( ) ( )
( )

1

1

Vol1
Vol Vol

Vol( )

n
D

i D D n
i q

i
i

r

r
ε=

=

Λ
= ⋅ Λ = Λ =∏

∏

ɶ
ɶ ɶ . (11) 

The denominator 

1

1

n

i
i

r

−

=

      
∏  corresponds to the volume of 

the elementary quantization grid (see Figure 3).  

In order to reduce the number of paths in the trellis of a 

lattice in LR , one wants  to keep low value entries in diag( )P , 

while at the same time, a good approximation that minimizes 

( ) ( )D D

F
−H Hɶ , implies having larger 

i
r  values (as these 

ratios are fixed, this constitutes another constraint into the 

problem). 

Algorithm 1 outputs ( )Λ Hɶ ɶ  and, by construction, the shape 

of the Voronoi regions of this lattice are similar to the ones of 

the original Λ . Using the concept introduced in Section III, 
the focusing linear transformation is 

 
1( , ) −= ⋅H H H Hɶ ɶF , (12) 

with F close to the identity matrix, i.e., 
F
ε− <IF . By 

allowing an increasing number of cosets, ε can be reduced 

towards zero.  

 
Figure 3. Approximation versus number of cosets: the dilemma of the 

approximation in the dual lattice (example in a 3D space). 

VI. RESULTS AND DISCUSSION  

We have assessed the proposed receiver using lattices 

which arise in MIMO communications under Rayleigh flat 

fading channel and compared its performance with the one of 

lattice-reduction-aided receivers (with ZF and with ordered 

successive interference cancellation (OSIC) schemes), which 

are well known for capturing the full diversity provided by 

MLD [15]. The performances of linear ZF, linear minimum 

mean square error (MMSE) and OSIC without lattice-

reduction are also included in the results presented in Figure 4. 

The proposed trellis-based detection also attains full diversity 
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while reducing the gap between lattice reduction and MLD 

and the required number of cosets needed to achieve quasi-

optimum detection is surprisingly small. Algorithm 1 searches 

for an approximate lattice with a specified maximum number 

of cosets Γ (i.e., paths in a trellis). However, their average 

number is about half of the specified Γ. Figure 4 shows the 

performance for a typical benchmarking MIMO configuration 

(4×4 antennas with 64 QAM). Limiting the admissible number 

of cosets to Γ=100, we observe that an average of 38 paths is 

enough to synthesise good approximated lattices in LR to 

achieve a performance about 1.2 dB away from ML, 

coinciding with the performance of LLL-OSIC-ZF. With an 

average of 506 cosets, the gap shortens to 0.6 dB. The 

complexity in Algorithm 1 is dominated by the LLL reduction, 

O(n4), added to O(n3) in the QR decomposition, and the 

complexity of the iterations for rational approximation, 

dominated by a continued fractions algorithm, O(n3) [16] . 

Sphere decoding is well known to have a random number of 

branch expansions during the exploration of the tree (unless 

fixed complexity sphere decoding is used [17]). That number 

varies each time a received vector is decoded, and is highly 

dependent on the noise power. We note that, while in the 

proposed detector the number of cosets is also a random 

variable, it only affects the pre-processing stage. Then, the 

complexity remains constant over the coherence time of that 

lattice instance. For 2×2 configuration with 64-QAM, an 

average of 20 cosets have been found to assure the same 

performance as MLD and for the 3×3 setup, the performance 

is 0.2 dB away from MLD with 34 cosets on average. 

 

 
Figure 4. Symbol error probability when detecting in a lattice with n=8 real 

dimensions (4×4 MIMO configuration) with 64-QAM. 

 

The number of cosets needed for near-optimal performance 

diminishes for smaller alphabets (smaller M). This happens 

because the distortion between the received lattice and the 

approximated lattice in LR increases as one gets further away 

from the origin. It should also be noticed that, by construction, 

the number of trellis paths is an upper bound on the number of 

trellis states.  Finally, note that the length of the trellises 

(number of segments) is determined by the dimensionality of 

the lattice (n=2NR) and therefore, for the typical number of 

antennas in MIMO, these trellises are rather short. 
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