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Abstract—Non-orthogonal multiple access (NOMA) concate-
nated with multiple-input multiple-output (MIMO) or with massive
MIMO, has been under scrutiny for both broadband and machine-
type communications (MTC), even though it has not been adopted
in the latest 5G standard (3GPP Release 16), being left for beyond
5G. This paper dwells on the problems causing such cautiousness,
and surveys different NOMA proposals for the downlink in cell-
centered systems. Because acquiring channel state information
at the transmitter (CSIT) may be hard, open-loop operation is
an option. However, when users clustering is possible, due to
some common statistical CSI, closed-loop operation should be
exploited. The paper numerically compares these two operating
modes. The users are clustered in beams and then successive
interference cancellation (SIC) separates the power-domain NOMA
(PD-NOMA) signals at the terminals. In the precoded closed-
loop system, the Karhunen-Loève channel decomposition is used
assuming that users within a cluster share the same slowly changing
spatial correlation matrix. For a comparable number of antennas
the two options perform similarly, however, while in the open-loop
downlink the number of antennas at the BS is limited in practice,
this restriction is waived in the precoded systems, with massive
MIMO allowing for a larger number of clusters.

Index Terms—Non-orthogonal multiple access, successive inter-
ference cancellation, downlink, linear inter-cluster cancellation.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been much
studied for next generation wireless systems, including 5G,
when dense networks are envisaged due to its ability to further
enhance the overall spectral efficiency [1, 2, 3]. In contrast
to orthogonal multiple access (OMA), in NOMA all users are
superimposed in the time, frequency, or the code domains and
then separated by means of successive interference cancellation
(SIC) or parallel interference cancellation (PIC), and achieve
all points in the capacity region of the multiple access channel
(MAC) region [4]. In power-domain NOMA (PD-NOMA) the
signals are separated at the receivers taking in consideration
their different power levels, although other types of NOMA
exist; a range of other categories of NOMA are described in
[5]: scrambling-based NOMA, spreading-based NOMA, coding-
based NOMA, and interleaving-based NOMA. In addition to
those, NOMA based on the partitioning of lattices [6] have also
proved well even when the channel gains of the users in the
same cluster are similar [7, 8, 9, 10], which is a requirement
for a good performance in PD-NOMA. Both multiple-input
multiple-output (MIMO) schemes compared in this paper use
PD-NOMA, overwhelmingly the most studied type of NOMA.
Clustered MIMO-NOMA has also been studied for millimeter
waves ranging from 28 GHz up to 73 GHz [11], exhibiting

a superior sum-rate than OMA, as initially suggested by [3].
In [12] multiple analog beams are formed to further create
more NOMA groups and therefore increase performance for
any angular distribution of the users’ positions.

NOMA was included in long-term evolution (LTE) Re-
lease 14, under the name multi-user superposition transmis-
sion (MUST) [13], multiplexing two users, and despite the
information-theoretic foundations of NOMA [14], its practical
application has been postponed by 3GPP for the 5G standard,
after having been analyzed during the 3GPP technical tasks. The
authors in [15] show some reasons underpinning that decision.
They show how NOMA only outperforms multi-user MIMO
(MU-MIMO) when the system loading (defined in respect to the
length of the quasi-orthogonal sequences used in a spreading-
based or coding-based NOMA system) gets larger. However, at
lower overloading factors, the use of several slots (or resources
in general) by a spreading-based or coding-based NOMA makes
it less spectrally efficient than MU-MIMO. NOMA only outper-
forms MU-MIMO at high signal-to-noise ratio (SNR), due to
the inherent interference-limitation in MU-MIMO, but even so
with almost negligible gain (around 1 dB).

In the case of PD-NOMA, the number of users supported in
the power-domain is always very low, typically two or three
users, due to SIC error propagation. The issue of fair power
allocation is prone to a discussion over the definition of fairness
in the context of NOMA (see [16] and references therein).
In [17] it was proposed a power allocation policy based on
stochastic geometry to take into account the distribution of the
users’ location. While most papers analyze NOMA in a single-
cell scenario, the problem in real multi-cell scenarios raised the
problem of how to associate users to a cell while maximizing the
system’s sum-rate. This problem is dealt with in [18], applying
matching-theoretic algorithms. The multi-cell scenario can be
enhanced by considering different types of service requirements
in different cell and a power allocation algorithm that takes
in consideration different types of data traffic is proposed in
[19]. The benefits of PD-NOMA over OMA highly depend on
the differences between the channel gains to each user and a
well-designed system should have the option of switching to a
OMA at times. The authors in [20] recently bridged this gap by
proposing a utility cost that takes in consideration the costs and
gains associated to each MAC mode such that the system can opt
between them. When device-to-device (D2D) communication
exists in a cellular communication environment, NOMA can
be used to multiplex the communication from one transmitting
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Figure 1: Open-loop MIMO-NOMA with clustered terminals with null-space-based detectors.

terminal to two receiving devices [21]. While the number of
users possible to multiplex in PD-NOMA is extremely limited
(2 or 3 users only), the concatenation of PD-NOMA with
orthogonal frequency division multiplexing (OFDM) largely
increases the number of multiplexed users in the overall system.
The problem then becomes the one of user grouping and power
allocation, for which simple greedy algorithms can perform
quite decently [22].

When MIMO-NOMA is considered, the natural approach is
to spatially cluster users which, from a MU-MIMO precoding
point of view, behave as one virtual-user [23, 24]. Subsequently,
the messages to each user in a cluster are separated by SIC. This
requires channel state information at the transmitter (CSIT),
which can be challenging to obtain, and [25] shows how to
refine the quality of the CSIT. In the scenario of machine-type
communications (MTC) [26], where terminals are particularly
simple and energy-constrained, CSIT is even harder to attain.
Moreover, user grouping is also hard given the combinatorial
nature of the problem. An optimal solution to the user-selection
problem to form NOMA groups (which are then differentiated
in some orthogonal domain) is given in [27], but only for single-
antenna BS and single-antenna users, and only for groups with
two users. Obtaining CSIT with a massive MIMO base station
(BS) is even more challenging, due to the sheer number of chan-
nels; a technique to mitigate intra-cluster pilot contamination has
been proposed in [28].

This paper looks at the two most important MIMO-NOMA
downlink setups using clusters of users: the first system oper-
ating in open-loop (analyzed in Section II) and the second in
closed-loop using precoding at the BS (analyzed in Section III).
Both schemes were respectively proposed by Ding et al. in [29]
and [30]. The former system has also been analyzed in [31] in
terms of its information-theoretic achievable rates. The uncoded
system requires the number of antennas at the terminals to be
equal or greater than the number of antennas at the BS in order
to take advantage of the null space that the extra dimensions
permit, which constitutes a strong limitation on the number of
clusters. Both schemes are assessed and compared in this paper
not from an information-theoretic point of view, as typical in the
NOMA literature [31, 32], but rather via numerical simulation.

II. OPEN-LOOP MIMO-NOMA

A. System Model

Consider a downlink multi-user open-loop MIMO transmis-
sion with M antennas at the BS and N ≥M antennas at each
user, similar to the one in [29, 31], where users are grouped
in M clusters of K users, multiplexed with PD-NOMA (see
Fig. 1). The BS transmits x = Ps̃, where P is the M ×M
precoding matrix, which in the open-loop system corresponds
to an identity matrix, given that there is precoding at the BS,
and therefore no CSIT is needed at the BS. The transmitted
vector s̃ ∈ CM×1 is constructed as:

s̃ =

 α1,1s1,1 + · · ·+ α1,Ks1,K
...

αM,1sM,1 + · · ·+ αM,KsM,K

 , (1)

where sm,k ∈ C is the BPSK or QAM symbol to be trans-
mitted to the k-th user in the m-th cluster and the coefficient
α2
m,k ∈ [0, 1] defines the power allocation for the k-th user in

the m-th cluster. This system can be seen as a multi-user MIMO
(MU-MIMO) (also known as the broadcast channel [6]), where
each cluster plays the role of an aggregated virtual-user, and
later the information to each user within each cluster is distilled
from the NOMA symbol detected by the cluster. The set of
power coefficients is selected such that

∑K
k=1 α

2
m,k = 1 [29].

In the worst case, a user within a cluster will have to decode
K − 1 signals from other users with higher power allocation
coefficients than its own. The signal received at the k-th user in
the first cluster is:

y1,k = H1,ks̃ + n1,k, (2)

where H1,k ∈ CN×M is the Rayleigh flat-fading matrix from
the BS to the k-th user in the first cluster and n1,k is the
unit power additive white Gaussian noise vector for k-th user
in the first cluster. The noise is taken from an independent
circularly symmetric complex Gaussian distribution. i.e., n1,k ∼
CN (0, σ2

n) ∈ C1×K . The channel matrix for the first user in the
first cluster, is denoted as H1,1 ∈ CN×M . Linear detection at
each terminal is made by multiplying the incoming signal (2)



by the detection vector, leading to:

vH
1,ky1,k = v1,k

HH1,kwm s̃ + vH
1,kn1,k, (3)

where v1,k
H denotes the Hermitian transpose of v1,k, and wl is

an indicator vector. This relation can be expanded, knowing that
at the first cluster one is interested only in the sum α1,1s1,1 +
· · ·+ α1,Ks1,K :

vH
1,ky1,k = vH

1,kH1,kw1(α1,1s1,1 + · · ·+ α1,Ks1,K)+

M∑
m=2

vH
1,kH1,kwms̃m + vH

1,kn1,k,
(4)

where s̃m ∈ C is the contribution of cluster m to the s̃
vector. The aim is to eliminate the inter-cluster interference∑M

m=2 v
H
1,kH1,ks̃m in the first cluster, which amounts to im-

posing:
vH

m,kHi,kwm = 0, (5)

for any i 6= m. The matrix H̃i,k ∈ CN×M−1 is constructed by
removing the m-th column of the matrix Hm,k. The problem
can now be rewritten as:

vH
m,k

[
h1,ik · · ·hm−1,ik hm+1,ik · · ·hM,ik︸ ︷︷ ︸] = 0,

H̃i,k

(6)

where hm,ik ∈ CN×1 is the m-th column of the Hi,k matrix. It
is clear from equation (6) that vH

m,k ∈ CN×1 must belong to a
space that is orthogonal to H̃i,k. Let us expand the matrix H̃m,k

into its SVD decomposition for the case M = N :

H̃i,k = Ui,kλV
T (7)

where Ui,k is a unitary matrix:
U1,1 U1,2 . . . U1,N−1 U1,N

...
...

UN,1 UN,2 . . . UN,N−1 UN,N︸ ︷︷ ︸
Ũi,k

 (8)

and λ has the diagonal form:
λ1 0 . . . 0 0
0 λ2 . . . 0 0
...
0 0 . . . λmin(M,N) 0
0 0 . . . 0 0

 . (9)

Note that (9) has a zero row at the bottom (even if M = N)
because after removing a column from Hm,k to create H̃i,k, the
matrix becomes tall and thus rank-deficient. In general, there
will be (M − N) + 1 rows of zeros in the matrix of singular
values. One can see that the column highlighted in (8) (which
is a matrix in the general case), Ũi,k ∈ CN×(N−M+1), does not
contribute to H̃i,k since it is multiplied by the row of zeros (or a
zero fat matrix in general), thus spanning a space orthogonal to
H̃i,k. Next, one projects the hm,ik column onto the orthogonal
space using the projection matrix PU = Ũi,kŨ

H
i,k, choosing:

vm,k = Ũi,k
ŨH

i,khm,ik

‖ŨH
m,i,khm,ik‖

, (10)

which is equally applied by all the users in the m-th cluster,
eliminating the inter-cluster interference because (10) fulfils the
requirement established in (5). Consequently, N ≥M antennas
are needed at each user, otherwise the H̃i,k matrix becomes fat
rather than tall and thus there is no orthogonal space spanned by
the columns of Ui,k in (8). Without loss of generality, focusing
on the first cluster, the channel gains of the different users in the
first cluster should be ordered such that ‖vH

1,1H1,1‖2 ≥ · · · ≥
‖vH

1,kH1,k‖2, which is equivalent to choosing α2
1,1 ≤ · · · ≤

α2
1,k. Note that this ordering happens within each cluster, and

all clusters are statistically identical. Zero-forcing (ZF) detection
is then applied at each terminal in the cluster:

ỹ1,k = (vH
1,kH1,k)

−1vH
1,kH1,kw1α1,1s1,1 + · · ·+ α1,Ks1,K)+

+ (vH
1,kH1,k)

−1vH
1,kn1,k

= (α1,1s1,1 + · · ·+ α1,K) + (vH
1,kH1,k)

−1vH
1,kn1,k,

(11)
leading to a sum of the intended NOMA signal for that cluster
perturbed by a noise term.

For SIC detection to be possible with BPSK, the following
constraint is imposed:

αm,k >

k−1∑
i=1

αm,i, (12)

for users 1 ≤ k ≤ K in the m-th cluster, even though it
disregards fairness. One follows the rule α2

m,k−1 = 0.5×α2
m,k.

The rule follows the geometric progression of ratio 1/2 deprived
from its first term with k = 0, the value of

∑N
k=1(1/2)ktends

to 1 as N tends to infinity, and the restriction (12) is naturally
fulfilled. A similar strategy was proposed in the context of
visible light communications (VLC) using decaying factors 0.3
and 0.4 instead of 0.5 [33].

B. Performance

A two-user case PD-NOMA with null-space based MIMO is
assessed with BPSK and different QAM modulation schemes in
Figures 2, 3 and 4, with M = 2, N = 3, and K = 2 in all cases.
Subsequently, a five-users case with BPSK is also assessed.

The well-known two regimes of PD-NOMA emerge, depend-
ing on the SNR. Consider user 1 the one with the lowest power

SNR (dB)

-5 0 5 10 15 20

S
E
R

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Lowest alpha, best channel

Highest alpha, worst channel

Figure 2: Open-loop with two users, both using BPSK.
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Figure 3: Open-loop with two users. User 1: BPSK; user 2:
16-QAM .
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Figure 4: Open-loop with two users. User 1: 16-QAM; user 2:
64-QAM .

allocation (i.e., the one with larger channel gain). At low SNR,
user 1 can incorrectly detect the signal with the larger power
coefficient and propagate the error, incorrectly decoding its own
signal. At high SNR, user 2 still has to cope with the extra
degradation imposed by the interference from the signal to user
1, yielding a poorer performance. In Figures 2 and 4 user 2
clearly outperforms user 1 in the low SNR regime. As expected,
when using higher modulation schemes at user 2, that user’s
performance is degraded. Interestingly, when users 1 and 2
respectively apply BPSK and 16-QAM, the two regimes do not
appear in Fig. 3 because at low SNR the errors arising at initial
detection stage in user 1 are not significant to corrupt the BPSK
detection of user 1.

The robustness of the system is chiefly defined by the
relations between the power coefficients. In Figures 2 and 3,
α1 =

√
1/4 and α2 =

√
3/4 were used to compare with the

results in Fig. 1 in [29]. In Fig. 4, one has α1 =
√

1/17
and α2 =

√
16/17. Comparing Fig. 2 with Fig. 1 in [29], one

observes that the SER is bounded by the outage probability.
For the five user case, with M = 2 and N = 2, the users

are ordered such that user 1 has the best channel and user 5
the worst. In Fig. 5, one can find that users with higher power
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Figure 5: Open-loop with five users, all using BPSK: αm,1 =
0.0542, αm,2 = 0.1083, αm,3 = 0.2166, αm,4 = 0.4332, αm,5 =
0.8664).

allocation coefficients have a better (lower) SER at low SNR
and then worse performance at high SNR, exhibiting the same
dual-regime. The αm,k were defined by the set {1, 2, 4, 8, 16},
normalized by

√∑
α2
i =

√
341), such that

∑K
k=1 α

2
m,k = 1.

With six users and the same power allocation rule αm,1 becomes
too small, and user 1 gets a SER > 0.5 for SNR = 10 dB,
showcasing the limitations of PD-NOMA.

III. CLOSED-LOOP MASSIVE MIMO-NOMA

A. System Model

Consider a scenario similar to the previous one, but now with
a massive-MIMO BS with M antennas transmitting to users
equipped with N antennas. The users are also grouped into L
clusters, each of which with K users, all with different channel
matrices, however, they all share the same spatial correlation
matrix Rl. In such cases one can apply the Karhunen-Loève
channel decomposition [34, 35], according to which the k-th
user in the l-th cluster can have its channel matrix written as:

Hl,k = Gl,kΛ
1
2

l Ul, (13)

where Gl,k ∈ CN×N denotes a fast fading complex Gaussian
matrix, Λl ∈ CM×M is a diagonal matrix that contains the
eigenvalues of Rk and Ul ∈ CM×M is a matrix that contains
the eigenvectors of Rl, meaning that

Rl = UH
l ΛlUl = E{HH

l,kHl,k}, (14)

since that a correlation matrix is always symmetric. However,
Rl only has rl non-zero eigenvalues, with rl being the rank of
Rl. Therefore, Λl is of the form:

Λl =


0 0 . . . 0 0 0
. . .
0 0 . . . λM−rk,M−rk 0 0

0 0 . . . 0
. . . 0

0 0 . . . 0 0 λM,M

 , (15)

and thus can be reduced to a rl × rl matrix, turning Gl,k a
N × rl matrix and Ul a rl ×M matrix. Obtaining CSIT for
the fast fading matrix Gl,k may often be difficult. Because Rl



is a slowly-changing channel correlation matrix, its estimation
at the BS is easier to obtain. The BS sends a precoded M × 1
NOMA vector with superimposed symbols

S =

L∑
l=1

Pl

K∑
k=1

wlαl,ksl,k, (16)

where sl,k is the symbol for the k-th user in the l-th cluster,
αl,k is the power coefficient for the k-th user in the l-th cluster.
The number of effective BS antennas for each cluster is M̃l =
(M − rl(L − 1)) and, Pl is the M × M̃l precoding matrix of
the l-th cluster. wl = [0 · · · 0 1 0 · · · 0]T is the M̃l×1 precoding
vector that has a 1 in the l-th position. The k-th user in the l-th
cluster therefore receives

yl,k = Gl,kΛ
1
2

l Ul

L∑
l=1

Pl

K∑
k=1

wlαl,ksl,k + nl,k, (17)

where nl,k is the noise at the k-th user in the l-th cluster.
Looking at (17), Pl needs to satisfy the following constraint
to eliminate inter-cluster interference:

[UH
1 · · ·UH

l−1U
H
l+1 · · ·UH

L ]HPl = 0. (18)

Since [UH
1 · · ·UH

l−1U
H
l+1 · · ·UH

L ]H is always a fat matrix (and
thus it always has some non-zero nullspace), then

Pl = Null([UH
1 · · ·UH

l−1U
H
l+1 · · ·UH

L ]H). (19)

Using a Pl given by (19), the inter-cluster interference is
removed and (17) becomes

yl,k = Gl,kΛ
1
2

l UlPl

K∑
k=1

wlαl,ksl,k + nl,k. (20)

Without loss of generality, looking at user k = 1 in the first
cluster (l = 1) of a system with K = 2 users, (20) leads to:

y1,1 = G1,1Λ
1
2

1 U1P1w1(α1,1s1,1 + α1,2s1,2) + n1,1. (21)

The information to all users is carried by the M̃l × 1 vector:

[α1,1s1,1 + α1,2s1,2 0 · · · 0]T , (22)

which imposes a limit of M̃l to the number of clusters. This
vector is then multiplied by the matrix G1,1Λ

1
2

1 U1P1 whose
dimensions are N ×M̃ , and whose elements will be denoted as
cn,m̃. Disregarding noise, this can be written as: c1,1 c1,2 . . . c1,M̃−1 c1,M̃

...
...

cN,1 cN,2 . . . cN,M̃−1 cN,M̃


α1,1s1,1 + α1,2s1,2

...
0


(23)

where only the first column of G1,1Λ
1
2

1 U1P1 influences the
received N × 1 vector y1,1. Applying ZF detection leads to

ỹ1,1 = (G1,1Λ
1
2

1 U1P1w1)−1×

[G1,1Λ
1
2

1 U1P1w1(α1,1s1,1 + α1,2s1,2)[1 0]T + n1,1]

= (α1,1s1,1 + α1,2s1,2)[1 0]T + (G1,1Λ
1
2

1 U1P1w1)−1

+ n1,1,

(24)
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Figure 6: Closed-loop with two users, both using BPSK. M=50,
N=3.
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Figure 7: Closed-loop with two users. User 1: BPSK; user 2:
16-QAM. M=50, N=3.

which again, as in the previous closed-loop model, is the
intended NOMA mixture for the cluster, added to a noise term.

B. Performance

A system with a massive array with M = 50 antennas
at the BS and terminals with N = 3, which is the same
number of antennas considered at the terminals in the open-
loop setup. Comparing Figures 6 and 7 with Figures 2 and
3, also with two PD-NOMA users and the same modulations,
one can see that the performances very similar. This is because
the channel models of (11) and (16) are in fact equivalent in
terms of end-to-end SNR per user. To understand why this
happens one needs to revisit equations (11) and (24) and note
that G1,1Λ

1
2
1 U1 = H1,1 (Karhunen-Loève decomposition) and

that ‖vm,k‖ = ‖P1‖ = 1. Hence, both equations are in fact
equivalent in terms of the ratio between the signal power and
the noise power in each of these ZF schemes, when averaging
over several channel realizations.

IV. COMPARISON AND CONCLUSIONS

While both systems are equivalent in terms of performance,
the open-loop cannot uphold a massive array at the BS because



it is limited by the number of receive antennas that the terminals
can fit, while in the closed-loop model an increasing number of
M antennas at the BS can lead to an arbitrarily large number of
clusters. However, one should notice the trade-off that higher-
rank correlation matrices impose, forcing to lower the number of
clusters or the number of effective transmit antennas per cluster.
It is worth mentioning that a system’s designer should not
only optimize the power coefficients but also consider different
modulations for the users. The correlation matrix can have a
rank as large as rl = N , so considering for example N = 8
antennas at the receivers and M = 128 at the BS, it is possible
to support L = 15 clusters, with M̃l = 128−8× (15−1) = 16
effective transmit antennas per cluster. In this example, the
closed-loop system can almost duplicate the number of NOMA
clusters possible in open-loop, which would be L = N = 8.
Notably, with single antenna terminals (N = 1), keeping the
M = 128 and the same M̃l = 16 antennas per cluster, one
could support L = 113 clusters.

ACKNOWLEDGMENTS

This work was funded by FCT (Foundation for Science and
Technology) and Instituto de Telecomunicações through national
funds, and when applicable co-funded EU funds, under the
project UIDB/EEA/50008/2020.

REFERENCES

[1] A. Anwar, B.-C. Seet, M. A. Hasan, and X. J. Li, “A survey on appli-
cation of non-orthogonal multiple access to different wireless networks,”
Electronics, vol. 8, p. 1355, Nov. 2019.

[2] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of
non-orthogonal multiple access for 5G,” IEEE Communications Surveys
Tutorials, vol. 20, no. 3, pp. 2294–2323, 2018.

[3] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K.
Bhargava, “A survey on non-orthogonal multiple access for 5G networks:
Research challenges and future trends,” IEEE Journal on Selected Areas
in Communications, vol. 35, pp. 2181–2195, Oct. 2017.

[4] L. Liu, Y. Chi, C. Yuen, Y. L. Guan, and Y. Li, “Capacity-achieving
MIMO-NOMA: Iterative LMMSE detection,” IEEE Transactions on Sig-
nal Processing, vol. 67, pp. 1758–1773, Apr. 2019.

[5] Z. Wu, K. Lu, C. Jiang, and X. Shao, “Comprehensive study and
comparison on 5G NOMA schemes,” IEEE Access, vol. 6, pp. 18511–
18519, 2018. Conference Name: IEEE Access.

[6] F. A. Monteiro, Lattices in MIMO Spatial Multiplexing: Detection and
Geometry. PhD thesis, University of Cambridge, UK, 2012.

[7] M. Qiu, Y. Huang, J. Yuan, and C. Wang, “Lattice-partition-based down-
link non-orthogonal multiple access without SIC for slow fading channels,”
IEEE Transactions on Communications, vol. 67, pp. 1166–1181, Feb.
2019.

[8] M. Qiu, Y. Huang, S. Shieh, and J. Yuan, “A lattice-partition framework of
downlink non-orthogonal multiple access without SIC,” IEEE Transactions
on Communications, vol. 66, pp. 2532–2546, June 2018.

[9] G. Geraci, D. Fang, and H. Claussen, “A new method of MIMO-based non-
orthogonal multiuser downlink transmission,” in 2017 IEEE 85th Vehicular
Technology Conference (VTC Spring), pp. 1–5, June 2017.

[10] D. Fang, Y.-C. Huang, Z. Ding, G. Geraci, S.-L. Shieh, and H. Claussen,
“Lattice partition multiple access: A new method of downlink non-
orthogonal multiuser transmissions,” in 2016 IEEE Global Communica-
tions Conference (GLOBECOM), pp. 1–6, Dec. 2016.

[11] W. Yi, Y. Liu, A. Nallanathan, and M. Elkashlan, “Clustered millimeter
wave networks with non-orthogonal multiple access,” IEEE Transactions
on Communications, pp. 1–1, 2019.

[12] Z. Wei, L. Zhao, J. Guo, D. W. K. Ng, and J. Yuan, “Multi-beam NOMA
for hybrid mmwave systems,” IEEE Transactions on Communications,
vol. 67, pp. 1705–1719, Feb. 2019.

[13] S. M. R. Islam, N. Avazov, O. A. Dobre, and K. Kwak, “Power-domain
non-orthogonal multiple access (NOMA) in 5G systems: Potentials and
challenges,” IEEE Communications Surveys Tutorials, vol. 19, no. 2,
pp. 721–742, 2017.

[14] M. Vaezi and H. V. Poor, “NOMA: An information-theoretic perspective,”
in Multiple Access Techniques for 5G Wireless Networks and Beyond
(M. Vaezi, Z. Ding, and H. V. Poor, eds.), ch. 5, p. 167–193, Springer,
2019.

[15] B. Makki, K. Chitti, A. Behravan, and M.-S. Alouini, “A survey of NOMA:
Current status and open research challenges,” IEEE Open Journal of the
Communications Society, vol. 1, pp. 179–189, 2020.

[16] G. Gui, H. Sari, and E. Biglieri, “A new definition of fairness for
non-orthogonal multiple access,” IEEE Communications Letters, vol. 23,
pp. 1267–1271, July 2019.

[17] Z. Ding, R. Schober, and H. V. Poor, “A general MIMO framework for
NOMA downlink and uplink transmission based on signal alignment,”
IEEE Transactions on Wireless Communications, vol. 15, no. 6, pp. 4438–
4454, 2016.

[18] M. W. Baidas, Z. Bahbahani, and E. Alsusa, “User association and
channel assignment in downlink multi-cell NOMA networks: A matching-
theoretic approach,” EURASIP Journal on Wireless Communications and
Networking, vol. 2019, p. 220, Sept. 2019.

[19] F. Mokhtari, M. R. Mili, F. Eslami, F. Ashtiani, B. Makki, M. Mirmohseni,
M. Nasiri-Kenari, and T. Svensson, “Download elastic traffic rate optimiza-
tion via NOMA protocols,” IEEE Transactions on Vehicular Technology,
vol. 68, pp. 713–727, Jan. 2019.

[20] M. Baghani, S. Parsaeefard, M. Derakhshani, and W. Saad, “Dynamic
non-orthogonal multiple access (NOMA) and orthogonal multiple access
(OMA) in 5G wireless networks,” IEEE Transactions on Communications,
pp. 1–1, 2019.

[21] S. Alemaishat, O. A. Saraereh, I. Khan, and B. J. Choi, “An efficient
resource allocation algorithm for D2D communications based on NOMA,”
IEEE Access, vol. 7, pp. 120238–120247, 2019.

[22] O. A. Saraereh, A. Alsaraira, I. Khan, and P. Uthansakul, “An efficient
resource allocation algorithm for OFDM-based NOMA in 5G systems,”
Electronics, vol. 8, p. 1399, Nov 2019.

[23] S. Ali, E. Hossain, and D. I. Kim, “Non-orthogonal multiple access
(NOMA) for downlink multiuser MIMO systems: User clustering, beam-
forming, and power allocation,” IEEE Access, vol. 5, pp. 565–577, 2017.

[24] F. A. Monteiro and I. J. Wassell, “Recovery of a lattice generator matrix
from its Gram matrix for feedback and precoding in MIMO,” in 2010
4th International Symposium on Communications, Control and Signal
Processing (ISCCSP), pp. 1–6, 2010.

[25] Y. Lan, A. Benjebbour, X. Chen, A. Li, and H. Jiang, “Enhanced channel
feedback schemes for downlink NOMA combined with closed-loop SU-
MIMO,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC
Spring), pp. 1–6, May 2016. ISSN: null.

[26] A. Shahini and N. Ansari, “NOMA aided narrowband IoT for machine type
communications with user clustering,” IEEE Internet of Things Journal,
vol. 6, pp. 7183–7191, Aug 2019.

[27] J.-M. Kang and I.-M. Kim, “Optimal user grouping for downlink NOMA,”
IEEE Wireless Communications Letters, vol. 7, pp. 724–727, Oct. 2018.

[28] D. Kudathanthirige and G. Amarasuriya, “Massive MIMO NOMA down-
link,” in 2018 IEEE Global Communications Conference (GLOBECOM),
pp. 1–7, Dec. 2018.

[29] Z. Ding, F. Adachi, and H. V. Poor, “The application of MIMO to non-
orthogonal multiple access,” IEEE Transactions on Wireless Communica-
tions, vol. 15, no. 1, pp. 537–552, 2016.

[30] Z. Ding and H. V. Poor, “Design of massive-MIMO-NOMA with limited
feedback,” IEEE Signal Processing Letters, vol. 23, no. 5, pp. 629–633,
2016.

[31] Y. Liu, G. Pan, H. Zhang, and M. Song, “On the capacity comparison be-
tween MIMO-NOMA and MIMO-OMA,” IEEE Access, vol. 4, pp. 2123–
2129, 2016.

[32] Z. Chen, Z. Ding, X. Dai, and R. Zhang, “An optimization perspective
of the superiority of NOMA compared to conventional OMA,” IEEE
Transactions on Signal Processing, vol. 65, pp. 5191–5202, Oct. 2017.

[33] H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat,
“Non-orthogonal multiple access for visible light communications,” IEEE
Photonics Technology Letters, vol. 28, no. 1, pp. 51–54, 2016.

[34] A. Adhikary, J. Nam, J. Ahn, and G. Caire, “Joint spatial division
and multiplexing—the large-scale array regime,” IEEE Transactions on
Information Theory, vol. 59, no. 10, pp. 6441–6463, 2013.

[35] M. Dai, B. Clerckx, D. Gesbert, and G. Caire, “A hierarchical rate splitting
strategy for FDD massive MIMO under imperfect CSIT,” in 2015 IEEE
20th International Workshop on Computer Aided Modelling and Design
of Communication Links and Networks (CAMAD), pp. 80–84, 2015.


