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Abstract  

 

 This thesis engages different detection methods for MIMO systems, in an attempt to test 

and expand the limits of MIMO antenna arrays. 

 This work begins by studying the concepts of diversity and multiplexing which are 

embedded in MIMO transmissions. Lattices will then be introduced as a helpful tool for 

optimizing the performance of several detectors. 

 One of the concerns of this dissertation was to look for efficient detection algorithms that 

could allow decent results, while keeping a low complexity so that it could be possible to 

achieve large antenna arrays. With this in mind, this work presents the most prominent 

detection techniques for MIMO, starting with the linear receivers Zero-Forcing and MMSE, 

and then a Successive interference cancelation and lattice reduction-aided algorithms. 

 An alternative that requires channel state information at the receiver was studied, noting 

that this configuration allowed pre-processing to be done on the channel matrix, leading to 

advantageous communication conditions. 

 Finally a study is made on the properties of large MIMO transmission channels, realizing 

several interesting facts that are a key motivation for the scalability of MIMO systems. 
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Resumo 

 

 Esta tese explora diferentes abordagens de detecção de sistemas MIMO com o intuito de 

testar e dentro dos possíveis expandir a dimensão dos agregados de antenas utilizados. 

 Numa primeira fase estudaram-se os conceitos de diversidade e multiplexagem que estão 

presentes em sistemas MIMO, para que posteriormente fossem identificadas oportunidades de 

expansão e melhoria dos detectores mais tradicionais. De seguida aprofundou-se o desenho 

conceptual de lattices que são uma ferramenta extremamente útil e eficaz na redução da 

complexidade dos receptores, aumentando a performance dos detectores. 

 Tendo como objectivo principal a obtenção de sistemas MIMO a funcionar para grandes 

agregados de antenas, houve sempre uma preocupação de procurar iniciativas com bons 

resultados mas que ao mesmo tempo não fossem demasiado exigentes computacionalmente, 

para que os seus algoritmos possam ser escalados para grandes dimensões. Com isto em 

mente testaram-se várias sinergias com os detectores lineares mais conhecidos, Zero-Forcing 

e MMSE, começando por testar uma abordagem de cancelamento sucessivo de interferência 

(SIC) e posteriormente uma alternativa com a redução de lattices (LR). 

 Uma alternativa que pressupõe o conhecimento prévio das condições do canal de 

transmissão é abordada e estudada, realçando que esta abordagem proporciona condições 

vantajosas de comunicação através da decomposição do canal e criando canais de 

comunicação paralelos. 

 Por último é feito um estudo às propriedades de canais de propagação de grandes 

dimensões, observando acontecimentos interessantes, que são um factor motivacional para a 

escalabilidade dos sistemas MIMO. 
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1 Introduction to MIMO communications 

 

This chapter presents an overview on 

telecommunications and introduces some basic 

concepts of MIMO communications. 
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 Telecommunications progresses 1.1

The field of information and communications technology (ICT) is facing a paradigm 

shift where portable devices and mobile Internet are steadily growing over personal 

computers and wired Internet services. 

Cellular technology started migrating towards data and Internet services with the 

introduction of third-generation (3G) and fourth-generation (4G) services, allowing new 

anytime/anywhere computing and multimedia applications that go from simple internet 

browsing up to mobile video streaming. 

According to International Telecommunications Union (ITU), the mobile market will 

have over nine billion subscriptions in 2020, representing 113% of the projected world 

population, but with currently seven billion mobile-cellular telephone subscriptions it is now 

reaching a saturation point as it represents 95,5% of the world’s population. Even though the 

forecast points towards a stalling point, the telephone now has a surprisingly big penetration 

on the world’s population and has become a necessary tool for everyone’s life (figure 1). 

 

 

Figure 1 – ITU forecast on mobile phone market 2012-2015 (graph taken form in [1]). 

 

This combined with cellular applications that demand more and more bandwidth and 

data rates has led to a rapid growth on mobile data services. 
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To demonstrate the quick evolution of the wireless technology in the recent past, we 

can observe the figure 2 and realize that in ten years there has been an expansion of new radio 

equipment at the hardware platform level, going from 2G to 4G including WiFi, Bluetooth, 

open mobile handsets, software-defined radio, and most recently, open virtualized access 

points and base stations. At the radio physical layer, the cellular radio link speed has increased 

from about 2 Mb/s with early 3G systems in the year 2000 to 100 Mb/s with 4G (LTE and 

WiMax) systems using multiple-input–multiple-output (MIMO) radio technology which is the 

main focus in this work. 

 

Figure 2 - Wireless Technology roadmap (taken from [2]). 

 

A key player in the networking industry [3] predicts that mobile generated traffic will 

exceed the traffic of fixed personal computers by 2015, as a result of the migration of most 

ICT services to mobile devices in the recent years.  

With all these trends, large-scale delivery of internet applications on mobile devices 

will require faster radio access bit rates, improved spectrum efficiency, higher access system 

capacity and improved security on the open radio medium, among other needs. Most of the 

research and development on the wireless field today is focused on addressing these aspects, 

and this thesis will briefly discuss some of those. 

One of the problems on the migration into mobility is that mobile phones have limited 

batteries, which forces all the wireless communications technologies to be computationally 
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efficient in order to minimize the power consumption. Another challenge is the fact that 

cellular networks keep getting populated with all the emerging smartphones, burdening the 

networks with heavy and complex data resulting in the need to distribute bandwidth 

efficiently.  

In order to tackle these problems, multiple access techniques were developed where 

users shared resources while trying to minimize interference between them (although 

interference management is undergoing a major paradigm shift with the advent of physical 

layer network coding and full-duplex based in advanced interference suppression).  

Time division multiplexing (TDMA) was used in GSM, allowing the users to share the 

same frequency, dividing the signal into multiple time-slots. Another multiplexing option is 

dividing the signal in the frequency domain, giving each user a unique frequency (FDMA).  

In CDMA (code division multiple access) the information signals of different users are 

modulated by orthogonal or non-orthogonal spreading codes. The resulting spread signals 

simultaneously occupy the same time and bandwidth, and the receiver uses the spreading code 

structure to separate out the different users.  

All these multiplexing strategies described above have evolved into the spatial 

multiplexing, allowing increased spectral efficiency, and MIMO (multiple-input multiple-

output) had an important role in this improvement. 

MIMO is a technique that uses multiple antennas at the transmitter and multiple 

antennas at the receiver, and these multiple antennas at either the transmitter or receiver can 

be used to achieve diversity, an array power gain, resulting in performance and spectral 

efficiency gains. 

If the MIMO system has access to the channel gain matrix, i.e. through a pilot test, 

independent signalling paths can be obtained by exploiting the structure of the channel matrix, 

allowing spatial multiplexing where multiple parallel streams of data are transmitted.  

MIMO can then be divided into three categories; precoding, spatial multiplexing and 

diversity coding.  

Precoding in more general terms is all the spatial processing that occurs at the 

transmitter, and can be looked as multi-stream beam forming. In single stream beam forming, 

each transmit antenna emits the same signal with appropriate phase and gain weighting such 

that the signal power is maximized at the receiver input. If the signals emitted from different 
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antennas add up constructively, the multipath fading effect is reduced leading to an increased 

received signal gain. In line-of-sight propagation, beam forming results in a well-defined 

directional pattern. However, conventional beams are not a good analogy in cellular networks, 

which are mainly characterized by multipath propagation. When the receiver has multiple 

antennas, the transmit beam forming cannot simultaneously maximize the signal level at all of 

the receive antennas, and precoding with multiple streams is often beneficial. However, 

precoding requires knowledge of channel state information (CSI) at the transmitter and the 

receiver, which might limit its usability. 

Spatial multiplexing requires a multiple-antenna setup. In spatial multiplexing, a high-

rate signal is split into multiple lower-rate streams and each stream is transmitted from a 

different transmit antenna in the same frequency. If these signals arrive at the receiver antenna 

array with sufficiently different spatial signatures and the receiver has accurate CSI, it can 

separate these streams into (almost) parallel channels. Spatial multiplexing is a very powerful 

technique for increasing channel capacity at higher signal-to-noise ratios (SNR). The 

maximum number of spatial streams is limited by the smaller of the number of antennas at 

either the transmitter or the receiver. Spatial multiplexing can be used without CSI at the 

transmitter, but can be combined with precoding if CSI is available. Spatial multiplexing can 

also be used for simultaneous transmission to multiple receivers, known as space-division 

multiple access or multi-user MIMO, or also as the broadcast channel (in the information 

theory community), in which case CSI is required at the transmitter.  

Diversity coding techniques are used when there is no channel knowledge at the 

transmitter. In diversity methods, a single stream (unlike multiple streams in spatial 

multiplexing) is transmitted, but the signal is coded using techniques called space-time 

coding. The signal is emitted from each of the transmit antennas with full or near orthogonal 

coding. Diversity coding exploits the independent fading in the multiple antenna links to 

enhance signal diversity. Because there is no channel knowledge, there is no beam forming or 

array gain from diversity coding. Diversity coding can be combined with spatial multiplexing 

when some channel knowledge is available at the transmitter. 

In this dissertation, space-time codes and diversity coding will not be further 

described. Note that nowadays, the emphasis is put on the spectral efficiency at the “MIMO 

physical layer”, as diversity can be provided by other techniques such as the modulation itself 

(e.g., OFDM). 

A few issues arise in communication over fading channels. Fading occurs due to 
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variations in the magnitude and/or phase of one or more frequency components in time, 

caused by the time-varying characteristics and time-dispersive nature of the propagation 

environment. It can cause a loss of signal power without reducing the power of the noise 

resulting in a decreased performance in a communication system. 

This signal loss can be over some or all of the signal bandwidth. Fading can also be a 

problem as it changes over time: communication systems are often designed to adapt to such 

impairments, but the fading can change faster than the adaptations can be made, which is 

usually a concerning problem in real time communications. 

Fading can be divided into large and small scale signalling fading. The first is mostly 

caused by environmental elements like shadowing by buildings and natural features or rain, 

meaning that in order to overcome large fading, solutions tend to be at the system protocol 

level e.g. base station positioning, power control, etc. This thesis will focus on enhancing 

performance through signal processing techniques applied at the physical layer to mitigate the 

effects of small scale fading. 

The small scale signalling fading in the receiver antennas is caused by signal 

scattering off objects in the propagation environment. This scattering leads to a phenomenon 

known as multipath propagation, where the composite received signal is distorted due to 

being comprised of a number of delayed copies of the transmitted waveform. These copies are 

also referred to as multipaths, since they propagate along different paths to reach their 

destination. 

Diversity can be used to minimize the effects of fading, and the diversity techniques 

presented here operate over time, frequency or space. The main idea is the same, by sending 

signals that carry the same information through different paths, multiple independently faded 

replicas of data symbols are obtained at the receiver end and more reliable detection can be 

achieved. 

The more intuitive way to exploit the existence of multipath fading is by replicating 

the transmission of a signal over multiple antennas. More intelligent schemes exploit channel 

diversity and, at the same time, efficiently use the degrees of freedom in the channel. 

Compared to repetition coding, they provide coding gains in addition to diversity gains.  
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 MIMO in the recent standards 1.2

Evolving from the concepts approached in the last section, the use of multiple 

antennas at both the transmit and receive nodes have become very popular due to the 

advantages they promise to offer, including high data rates and transmit diversity. It has 

become one of the most important technologies for the development of existing and emerging 

wireless communications systems. 

The physical layer of the fourth generation (4G) wireless networks is based on these 

two relatively new concepts; orthogonal frequency division multiplexing (OFDM) and 

MIMO. Along with larger channel bandwidth, new standards like IEEE 802.16 and Long 

Term Evolution (LTE) were released. 

In its first releases, LTE relied on MIMO mostly for the downlink (i.e., from the base 

station (BS) to user equipment), using 4 layers in the downlink (DL). In the latest release 10 

(known as LTE-Advanced), the role of MIMO also became important in the uplink (UL). 

Indeed, MIMO is utilised in both uplink and downlink of the IEEE 802.16m standard 

(WiMAX profile 2.0). 

Presently, MIMO is entering the vast domestic market via 802.11n [4], [5], the latest 

generation of Wi-Fi, designed for a peak rate of 600 Mbps (using 40MHz bandwidth and 4×4 

antennas), which is the first commercial product to be based in MIMO and OFDM. 

It is known that the capacity of MIMO channels grows linearly with the minimum of 

the number of antennas on the transmitter and receiver sides [6], and that factor was the base 

of this thesis, where increasing the number of antennas at the communication terminals now 

allows high spectral efficiencies and high diversity orders in wireless transmissions.  
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2 Diversity and Multiplexing 

 

This chapter presents some introductory 

problems on MIMO systems and studies the 

conceptual differences between Diversity and 

Multiplexing. 
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 MIMO system model  2.1

A MIMO system can be modelled by an input vector   (with    antennas at the 

transmitter), an output vector   (another vector but with    antennas) that is obtained from   

by means of a linear matrix transformation  , which represents the environment channel. In a 

real system, the detection of y is usually perturbed  by a noise vector   of the same size. The 

system can then be resumed to  

        (1) 

 

 

 

 

 

 

 

 

 

Figure 3 - Wireless MIMO link. 

 

The MIMO scheme illustrated above (figure 3) is the general communication system 

where    and    are both bigger than 1. The origin of MIMO relates to the conventional 

radio system communications with one antenna at the transmitter and one at the receiver 

(SISO). Some specific cases of MIMO will be analysed in order to note the evolution from 

SISO to MIMO, including SIMO (Single-Input Multiple-Output) and MISO (Multiple-Input 

Single-Output). 

The main goal is to describe the advantages of increasing the number of antennas at 

the transmitter, receiver or both, leading to the central question in this dissertation, which is to 

assess how many antennas can be placed at the while maintaining significant gains with 

affordable complexity. This study is mostly on a signal processing point of view, meaning 

that even if a certain number of antennas at the terminals is achieved, electronics might not 

have yet the technology to create antennas small enough to fit in either a mobile terminal or a 
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base station. One should also bear in mind that as the spacing between antennas diminishes, 

they become increasingly correlated and the capacity of the system diminishes [6], but as 

mentioned this problem is beyond the scope of this thesis. 
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 Shannon capacity and the advent of MIMO 2.2

In 1948 Shannon defined capacity as the mutual information maximized over all 

possible input distributions [7], and this limit establishes the maximum data rates that can be 

achieved over wireless channels. One could then have a binary transmission without errors 

even when in the presence of additive white Gaussian noise (AWGN) (figure 4), as long as 

the transmission rate was kept below the Shannon’s capacity. This meant that a signal could 

now be detected and regenerated in a wireless transmission. 

A discrete-time additive white Gaussian noise channel with channel input/output 

relationship, at the output of a matched filter, is  [ ]   [ ]   [ ], where  [ ] is the channel 

input at time  ,  [ ] is the corresponding channel output, and  [ ] is a white Gaussian noise 

random process. The channel capacity is then given by Shannon’s well-known formula (2), 

where the channel SNR is the power in  [ ] divided by the power in  [ ] 

        (     )  (2) 

A Signal to Error Ratio curve of a standard AWGN in a SISO link with 4 QAM was 

simulated in order to calibrate the standard capacity curve with the literature. 

 

’ 

Figure 4 - AWGN SER curve of a SISO model. 
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Receiver diversity is known to improve the performance of wireless communications 

in fading channels. The main advantage of receiver diversity is that it mitigates the 

fluctuations due to fading by averaging them in a way that the channel appears more like an 

AWGN channel. Antenna diversity, or spatial diversity, can be obtained by placing multiple 

antennas at the transmitter and/or the receiver. If the antennas are placed sufficiently apart, the 

channel gains between different antenna pairs fade more or less independently, and 

independent signal paths are created. 

In this case, receive diversity will be analysed with multiple antennas at the receiver, 

known as single input, multiple output (SIMO) channels. One can observe the diversity gain, 

as increasing the number of antennas at the receiver greatly reduces the symbol error rate. 

When the number of antennas tends to infinity the error curve would tend to the one of the 

simple AWGN case where only the noise impairs the reception. This is because the power of 

the wireless link is one, modelled by the complex coefficient  , whose average is one, 

i.e.,  [   ]. 

A fading channel with one transmit antenna and   receive antennas can be modelled 

as follows (figure 5): 

 

 

Figure 5 - Single Input Multiple Output antenna configuration. 

 

 

           (3) 

Where   [ 1     ]
     1 is the received signals vector and   is the transmitted signal. 

   N  𝑚 NR 
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     1  is the channel matrix representing the links between the transmit and the receive 

antennas. The noise vector    [ 1     ]
     1 represents the noise vector that is 

added to the incoming signal vector. The entries of   are random variables taken from an 

independent circularly symmetric complex Gaussian with zero average and variance   
  , so 

that both its real and imaginary components have variance   
   . 

If the antennas are spaced sufficiently far apart, then we can assume that the gains    

are independent Rayleigh, and we get a diversity gain of  . (4). This parameter describes how 

the SER decreases with the increase of SNR, i.e., when plotting the SER against the SNR this 

diversity order is simply the slope of the SER curve and it can be obtained by 

   
    (  R)

    (  R)
  (4) 

 

The maximal ratio combining (MRC) is the optimum detector of multiple channels, 

where the output is a weighted sum of all branches (5)  

 

 ∑   
         

  
  1 ∑ |  |

    
  
  1  (5) 

 

Which are detected by applying a simple matched filter (MF) to the channel (6). Note 

that the MF detector simply ignores noise 

 

         (6) 

 

Applying the MRC detector, one can now explore the diversity slope studied before. 

In this case, we simulated a SIMO system with 1, 2, 4 and 8 antennas at the receptor over 16 

QAM, obtaining the following results (figure 6):  



14 
 

 

Figure 6 - SIMO curve with 1, 2, 4 and 8 antennas at the receiver. 

 

As we can observe in figure 6, the slope gets more inclined as the number of antennas 

increases, which is on pair with our predictions. 

One should note that the maximal ratio combining is actually an instance of zero-

forcing, detection (to be described in chapter 4) when the pseudo-inverse filter is applied. 
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 The parallelisation of channels via SVD  2.3

As we have seen in the previous chapter, having multiple antennas at the transmitter or 

receiver can be used for diversity gain. When both the transmitter and receiver have multiple 

antennas, there is another mechanism for performance gain called multiplexing gain. 

In figure 7, one sees a source with data sequence 110 to be sent over a MIMO system 

with three transmitters. In the diversity form of MIMO, the same data, 110 is sent over three 

different transmitters. If each path is subject to different fading then the likelihood is high that 

one of these paths will lead to successful reception. This system has a diversity gain of three. 

The second form uses spatial-multiplexing techniques. In a diversity system, we send the 

same data over each path. To demonstrate diversity and multiplexing we will analyse a 

pseudo data transmission. Let’s suppose we multiplex the data 1,1,0 over three channels. Each 

channel carries different data, similar to the idea of an OFDM signal. By multiplexing the data 

we have increased the data throughput or the capacity of the channel, but we have lost the 

diversity gain. The multiplexing has tripled the data rate, so the multiplexing gain is 3 but 

diversity gain is now 0. Whereas in a diversity system the gain comes in form of increased 

reliability, here the gain comes in form of increased data rate. In this chapter we will represent 

the multiplexing gain by r.  

 

 

Figure 7 - MIMO Diversity system and MIMO multiplexing system. 

 

For each r the optimal diversity gain     ( ) is the maximum the diversity gain that 

can be achieved by any scheme. It is shown in [8] that if the fading block length exceeds the 

total number of antennas at the transmitter and receiver, then 

     ( )    (      )(      )            (     ) (7) 
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In this section, the number of antennas is noted as    and    which is the notation 

adopted in several textbooks (e.g., Goldsmith (2003)), however, the notation used throughout 

this dissertation for the number of antennas at the terminals is    and    for the transmitter 

and receiver respectively. 

The formula (7) implies that in a MIMO system, if we use all transmit and receive 

antennas for diversity, we get an error probability proportional to  N 
      and that, 

moreover, we can use some of these antennas to increase data rate at the expense of diversity 

gain. To better understand this Diversity versus Multiplexing trade off, the function (7) was 

plotted into figure 8. 

 

Figure 8 - Diversity-Multiplexing Trade-off for High SNR Block Fading (taken from [8]). 

 

One can then design systems to maximise one or the other: maximising diversity leads 

to space-time codes; maximising multiplexing gain leads to spatial multiplexing systems (that 

is the focus of this thesis). Multiplexing is nowadays more important than diversity because 

there is plenty of diversity being introduced by other techniques such as OFDM. 

In this chapter, we consider a MIMO system where CSI is fully available both at the 

transmitter and the receiver. It is known that precoding techniques can provide large 

performance improvements in such scenarios. A popular precoding approach is based on 
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singular value decomposition (SVD) of the channel so that the MIMO channel can be seen as 

parallel channels. 

In slow fading scenarios, channels are subject to block fading. Without rate and power 

adaptation, outages cannot be avoided. In such scenarios, a popular measure of reliability is 

the diversity order achieved by a given transmit-receive scheme. We consider SVD precoding 

for MIMO systems, which transforms the MIMO channels into parallel sub channels. 

Let us consider a MIMO channel with       channel gain matrix   known to both 

the transmitter and the receiver. Let    denote the rank of  . From matrix theory, for any 

matrix   we can obtain its SVD as: 

       , (8)  

where the       matrix   and the      matrix   are unitary matrices and   is an 

      diagonal matrix of singular values      of  . These singular values have the 

property that      √   for    the     eigenvalue of    , and    of these singular values are 

nonzero. Since    cannot exceed the number of columns or rows of            (   

  ). If H is full rank, which is sometimes referred to as a rich scattering environment, then 

         (     )  Other environments may lead to a low rank  : a channel with high 

correlation among the gains in   may have rank 1. 

The transmit precoding and receiver shaping transform the MIMO channel into    

parallel single-input single-output channels with input  ̃ and output  ̃, since from the SVD, 

we have that: 

 ̃      (      ) (9) 

    (        ) 

   (      ̃     ) 

         ̃        

   ̃     ̃  

 

where  ̃        and   is the diagonal matrix of singular values of   with    on the  th
 

diagonal. Note that multiplication by a unitary matrix does not change the distribution of the 

noise, i.e.   and  ̃ are identically distributed. Thus, the transmit precoding and receiver 

shaping transform the MIMO channel into    parallel independent channels where the     

channel has input  ̃ , output  ̃ , noise  ̃ , and channel gain   . Note that each     are related 



18 
 

since they are all functions of  , but since the resulting parallel channels do not interfere with 

each other, we say that the channels with these gains are independent, linked only through the 

total power constraint. 

One known technique to take advantage of the channel knowledge, beyond the SVD 

channel parallelisation is the waterfilling algorithm. 

Considering the power of the symbol transmitted of the     parallel channel by     the 

capacity is 

      
  ∑    1

  
   

∑     (   
  
  1     ) (10) 

With   [ 1         
]. This capacity can only be obtained if the inputs are independent 

complex Gaussian. 

The optimization problem then presents us with the following known solution: 

         (  
1

   
)
 

 (11) 

where ( )      [   ] and   is the solution of 

 ∑ (  
1

   
)
 

   
  
  1  (12) 

and the resulting capacity is: 

   ∑ (   (    ))
   

  1  (13) 

 

This algorithm distributes the power according to the strongest channels obtained through the 

SVD process, in a way that a channel pipe with a corresponding higher Eigen value will be 

given more power than a less efficient pipe. This results in a better and more efficient power 

allocation, leading to an increase in capacity. 

In figure 9 we can observe the capacity of a precoding scheme, where a plain 4x4 MIMO 

system is simulated again through a MF decoder, but this time, knowing the channel matrix H 

beforehand, we can precode it to obtain the channel pipes, and then optimally distribute the 

power.  
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Figure 9 - Detection 4x4 antennas with 16-QAM using SVD precoding and SVD precoding 

with water filling optimization. 
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3  Lattices 

 

 

This chapter introduces the concept and 

fundamentals of lattices to posteriorly relate them 

with MIMO. 
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 Context 3.1

A lattice is a discrete set of vectors in real Euclidean N-space forming a regular group 

of points through ordinary vector addition. In a lattice, the sum or difference of any two 

vectors in the lattice is also in the lattice. A simple lattice is illustrated on figure 10.  

The concept of lattice was introduced in the 18
th

 century by famous mathematicians 

such as Gauss, Lagrange and Minkowski, but it was the latter that had a major role in making 

lattices a standard and helpful tool in number theory through its publication “Geometrie der 

Zahlen in 1896”. Lattices are related with problems in the integer domain, such as: continued 

fractions, simultaneous Diophantine equations, and several other fundamental problems in 

number theory, and in integer programming. However, in the early 1980s algorithmic theory 

of lattices had a major development with the introduction of new lattice reduction techniques 

such as the Lenstra-Lenstra-Lovász (LLL) that has found several uses in both pure and 

applied mathematics, while creating new implications in many problems.  

Lattices still remain a useful tool nowadays. In communication theory point-to-point 

transmission problems are evolving into network coding ideas, opening a few windows for 

lattices. In computer science and mathematics, lattices are also rising as their capacity to solve 

integer programming problems is helpful in many challenges. Despite its apparent simplicity, 

lattices are related to many of the most difficult algorithmic problems with NP-hard 

complexity, allowing lattices to assume an important role in cryptography as a source of 

computational hardness for the design of new barriers to an attacker. 

Lattices can also be used as a base for coding schemes and that application will be 

explored here. In the present work lattices take a prominent place as it will become clearer in 

the next chapters so it is important to define its structure and understand its main properties. 

Most of the properties and definitions in this chapter were taken from [9] [10] 

 

 

 



22 
 

 

 

 

 

 

 

Figure 10 - Lattice illustration in   . 

 Basic definitions 3.2

A lattice can be defined as a subset       closed under addition and subtraction, 

and discrete, meaning that there is an     such that any two distinct lattice points       

are at distance at least ‖   ‖     

One subgroup of    that is a lattice is    because integer vectors can be added and 

subtracted remaining an integer vector and the distance between any two integer vectors is at 

least one.  

This    lattice approach will be commonly used in this thesis and so it is important to 

understand this definition as it is assumed throughout the work. 

A lattice is the span of a finite set of vectors in a Euclidean space: 

    ( )      |        (14) 

Notice the similarity between the definitions of a lattice and the span of a set of 

vectors  : 

     ( )     |        (15) 

The central difference is that in a lattice only integer coefficients are allowed, resulting 

in a discrete set of points. As vectors         are linear independent, any point       ( ) 

can be written as a linear combination               in a unique way (although 

different sets of vectros, i.e., a basis, can generate the same lattice). Therefore    ( ) if and 
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only if          . 

Notice that the definition  ( )     |       can be extended to matrices   whose 

columns are not linearly independent. However, in this case, the resulting set of points is not 

always a lattice because it may not be discrete. 

3.2.1 Fundamental Region 

The fundamental region of a lattice basis H is defined as 

  ( )      |                  (16) 

The fundamental region must not contain any lattice point inside of it. It could not be 

represented by linear combination of integer vectors if it had one point inside, where the 

generating vectors are the limits of the fundamental region. In figure 11 it is possible to 

observe the lattice and the fundamental region defined by the two generating vectors. 

One shall keep in mind that a lattice may be generated by different sets of vectors, and 

that there are infinite admissible bases for a lattice, which can be inferred from figure 11, as it 

is possible to select points further distant from the origin to replace a generator vector and still 

have a fundamental region without any lattice point in it. 

 

Figure 11 - Span of  ( ) with the fundamental region  ( ). 

3.2.2 Voronoi Region 

The Voronoi region is the area of the lattice that contains all the points in the span of 

the lattice which are closer to a given lattice point x than to any other point in the lattice, and 

 [2,0]

 [1,1]
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is defined by: 

  ( )         ( ) ‖   ‖  ‖   ‖         (17) 

This region is a characteristic of the lattice and independent of any particular 

generating matrix and it is the most interesting fundamental region that constitutes the optimal 

decision region for the closest vector problem in lattices. 

Figure 12 shows the Voronoi region of a lattice. One can denote on the figure that the 

Voronoi regions are limited by the blue lines. 

 

Figure 12 - Illustration of Voronoi regions of a lattice. 
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3.2.3 Volume 

When the channel matrix H is non-singular we are in the presence of full-rank lattices. 

The volume of the lattice (which is independent of the fundamental region) is 

    ( )  |    ( )|   (18) 

however, in general the following expression is required: 

    ( )  √   (   )  √   ( ) 
(19) 

3.2.4 Shortest Vector and successive minima 

The length of a lattice is the Euclidean norm of the shortest nonzero vector in the 

lattice, and is usually referred to as  1.  

  is then the     successive minimum of a lattice if   is defined as the smallest real 

number within the radius of a sphere containing   pairwise independent vectors with norms 

smaller or equal to  . It is now easy to understand that  1is the shortest vector and has norm 1. 

 Lattice Reduction 3.3

Lattice reduction is a powerful technique that has several uses and lead to a 

breakthrough of new and appellative results in the MIMO context, allowing the resolution of 

problems like finding the shortest vector. 

Lattice reduction consists in changing a basis H of a lattice   into a shorter basis 

     so that   remains the same and it can be implemented by algorithms such as LLL and 

KZ being the former the most known. The LLL lattice basis reduction algorithm was invented 

by Arjen Lenstra, Hendrik Lenstra and László Lovász in 1982 [11] and is a polynomial time 

lattice reduction algorithm.  

LLL usually obtains an approximation for the shortest vector but there is not yet an 

efficient algorithm to solve this problem. However the approximation obtained by the LLL 

allows many application uses. In this thesis a complex version of the original LLL algorithm 

(CLLL) will be used in some of the receivers presented on the next chapter. 
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To obtain a better lattice basis, the LLL algorithm performs successive orthogonal 

projections and if needed, swaps two consecutive vectors of H in an attempt to end up with a 

near orthogonal basis        The output of the algorithm is a new reduced basis      that has 

near-orthogonal vectors and a unimodular matrix M that follows 

          (20) 

In the next chapter most receivers will be tested with and without lattice reduction and 

it will be possible to denote the advantages of this tool. In table 1 we have the pseudo-code of 

the algorithm implemented. The parameter   manages the performance and complexity of the 

algorithm, meaning that higher values of   lead to a better performance due to higher 

complexity. At the simulations performed along this dissertation   was assumed to be 0.75 as 

it is commonly recommended in the literature as a good trade-off between orthogonality 

performance and complexity. It is simple to observe now a direct relation between a real 

lattice basis H and a real MIMO channel matrix H. 
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Table 1. Matlab pseudo-code of the complex LLL algorithm 

1: [   ]                    ( )  

2:        

3:       (   ) 

4:      

5:     

6:           

7:                

8:        (( (   )  (   )) 

9:          

10:  (     )   (     )     (     ) 

11:  (   )   (   )     (   ) 

12:     

13:     

14:      | (       )|  | (   )|  | (     )|  

15: swap the (   )                               

16:   [
   
   

]          
 (  1   1)

‖ (  1      1)‖
       

 (    1)

‖ (  1      1)‖
 

17:  (            )    (            ) 

18:  (       )   (       )   

19:       (     ) 

20:      

21:       

22: end 

23: end 

24:         
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4 MIMO detection 

 

In this chapter several low-complexity receivers 

are presented along with results comparing their 

performance. A lattice approach will be studied in 

other to achieve better results. 
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 Fundamentals of Spatial Multiplexing 4.1

As described in the second chapter, the main idea behind spatial multiplexing is that 

signals sampled in the spatial domain at both ends are combined in order to create multiple 

parallel spatial data pipes (SISO channels), increasing the data rate, while possibly adding 

diversity to improve the quality of the communications by reducing the bit-error rate 

Spatial multiplexing in the context of MIMO has enabled unprecedented spectral 

efficiencies in wireless fading channels achieving high date-rates. However this gain of 

performance comes at the price of increased complexity in the detection of the receivers. This 

complexity presents a great challenge to the decoder’s implementation and is usually where 

most of the research is available and rising nowadays. In this chapter a background study will 

be done on some of the receivers that have been implemented so far. The performance of 

linear receivers will be analysed, as well as the successive interference cancellation (SIC) 

receivers. A lattice approach will be described in an attempt to expand the perception of the 

detection problem and to obtain better results. 

One of the first examples of practical application of MIMO is the patent of Paulraj and 

Kailath [12] which introduced a technique for increasing the capacity of a wireless link using 

multiple antennas at both ends for application to broadcast digital TV. 

The MIMO system that will be studied in this chapter is a single user point-to-point 

communication MIMO, which was previously illustrated in Figure 3. This system is based on 

multiple antenna scenarios where both the transmitter and the receiver use several antennas, 

each one with separate radio frequency modules, and where the interfering channels are the 

radio links between all pair of transmit and receive antennas. 

In this MIMO communications system with transmit antennas and receive antennas 

(with so that the linear system it gives rise to is determined) the relation between the 

transmitted and received signals can be modelled in the baseband as (21) 

        
(21) 

where   [ 1      
]
 
     1 is the received signals vector and   [ 1      

]
 
 

    1 is the transmitted signals vector. The radio links between each pair of transmit and 

receive antennas are represented by the channel matrix          in which its entries     

represent the complex coefficient associated with the link between the pair of a     receive 
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antenna and the     transmit antenna. Each     is taken from a zero-mean circularly 

symmetric complex Gaussian distribution with unit variance, which corresponds to having a 

variance equal to     in both real and imaginary components. In order to have an independent 

and identically distributed Rayleigh fading channel model the phase of each entry     is 

uniformly distributed in [    [ and their amplitude has a Rayleigh distribution. In this model 

the vector   [ 1      
]
 
     1 represents the noise vector that is added to the 

incoming signal vector. The entries of   are random variables taken from an independent 

circularly symmetric complex Gaussian with zero average and variance   
  , so that both its 

real and imaginary components have variance   
   . This noise model is usually called as 

zero-mean spatially white (ZMSW) noise [13]. 

In this work square quadrature amplitude modulation (QAM) constellations are used. 

The simulations are conducted with  -QAM constellations with           and the 

input symbols in each transmit antenna are taken from a finite complex constellation   

constructed from the Cartesian product        , where    is the real alphabet  

   { (√   )                  (√   )}. (22) 

Although QAM is assumed, QPSK (quadrature phase shift keying) can also be used in 

MIMO, leading to the same results as 4-QAM as the radio waves are modulated the same 

way. In addition to that, most literature on MIMO spatial multiplexing uses QAM, and it is 

easier to relate the QAM constellations into lattices. 

The average energy of the complex symbol taken from   is given by 

    
 

 
∑ |  |

 

      
 (23) 

Assuming, without loss of generality, that the filters at the receiver have impulse 

response  ( ) normalised to ∫| ( )|      . 

Considering that each    receives the sum of    symbols weighted by unit power 

random variables, i.e.,  [|   |
 
]   , on average it is valid to calculate the SNR at the 

receiver as 
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  ‖ ‖  

  ‖ ‖  
 
  ‖  ‖  

  ‖ ‖  
 
 [∑ ∑ |     |

   
  1

  
  1 ]

 [∑   
  
  1 ]

 
      

 

    
    

  
 

  
   

(24) 

Table 2 lists the values of the average energy (  ) for the  -QAM modulations implemented 

in this work. 

 

Table 2 - Symbol energy for the modulations used. 

 4-QAM 16-QAM 64-QAM 

   2 10 42 

 

In the following sections a series of receivers will be analysed, starting with the linear 

receivers such as zero-forcing (ZF) and minimum mean square error (MMSE); followed by 

the ordered successive interference cancelation (OSIC) algorithm, and finally the receivers 

using lattice reduction-aided (LRA). 

One shall keep in mind that throughout this chapter, channel knowledge at the receiver 

is required in the model assumed, previously named as channel state information at the 

receiver (CSIR). Acquiring the channel knowledge is not an easy task, especially in fast 

fading channels, but this is not the focus of this thesis. 

Throughout this work the performance of a receiver will be noted by plotting the 

symbol error rate (SER) as a function of the SNR. The diversity gain, or slope   is the metric 

used to evaluate the performance of the receivers. All receivers here analysed are well 

calibrated and the results are on pair with the results available in the literature. 
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 Linear receivers 4.2

Linear receivers consist of applying a linear transformation to the received vector 

followed by a quantization to the symbol alphabet, also known as slicing. They are the 

simplest of all receivers but also the ones with worse results. However, due to the low 

complexity, they are scalable to a fair number of antennas at the terminals as it will be studied 

on the fifth chapter. 

One can estimate  ̂ from 

       1    1     1          
(25) 

  ̂     [   ] 
(26) 

which is commonly known as linear zero-forcing (ZF) receiver, as the interference caused by 

  is forced to be zero. In this thesis the channel matrix   was defined in the complex domain 

so in the equation (25),     corresponds to the pseudo-inverse matrix, also known as Moore-

Penrose matrix   . 

    (   )
 1
   

(27) 

Superscript ( )  denotes Hermitian operator which is a conjugation followed by 

transposition or vice-versa. One shall keep in mind that only matrices with non-zero 

determinants are invertible, and so it is required that      . Note that the noise is enhanced 

by the    transformation. 

  ̂     [ 
  ]    [ 

      ]    [     ] (28) 

 The detected vector  ̂  , as obtained from (4.8), is in fact the solution to: 

  ̂         
    

 ‖    ‖  (29) 

This receiver solves the CVP by relaxing it to a search in a continuous neighbourhood 

instead of computing the distance between the received vector and every point in the lattice. It 

can also be seen as a linear transformation of the Voronoi regions of the    by  . The 

resulting regions are called ZF decision regions and correspond to the space where a lattice 

point will be interpreted as being closer to the lattice point associated with that region [14]  
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We can minimize the noise enhancement with minimum mean-square error (MMSE) 

receiver. In this receiver both the interference and the noise are considered in order to 

minimize the expected error. The main difference between these two linear receivers is that 

MMSE looks for a linear transformation       that minimizes the mean square error 

between the estimated vector and the original vector, 

             
 

   ‖    ‖   (30) 

 That can also be represented as: 

         
       (  

        
       

 )
 1

   {    
  
 

  
   } 

(31) 

 ̂     can be obtained by a linear transformation       followed by a quantization 

step that is the same as in ZF. 

  ̂       [       ]    [               ]    [        ] 
(32) 

It is expected for MMSE to perform better than ZF because it solves CVP problem by 

relaxing the search in the continuous space where      but also for introducing a term that 

penalises large ‖ ‖ and is proportional to the energy of the noise [14]. 

 Maximum Likelihood Detection 4.3

Before posting the results of the linear receivers, one should stablish the standard 

comparison of all the detectors relating to the MLD curve, the best curve possibly obtained, 

although mainly computational as its performance is extremely expensive computationally. 

The maximum likelihood estimate  ̂ [15] for   given   is  

 
 ̂         

    
 ( |   ) (33) 

Where assuming the ZMSW noise model, the probability density function of   given 

  and   can be written as 

 ( |   )  
 

(    
 )   

   ( 
‖    ‖ 

   
 ) 

(34) 
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Leading to  

 ̂         
    

 

(    
 )   

   ( 
‖    ‖ 

   
 ) 

 ̂         
    

 ‖    ‖  (35) 

 

The exponential parcel induces a growth in the search space for  -QAM 

constellations thus discouraging the use of brute force maximum-likelihood detection when N 

increases.   

The figures 13 and 14 show the performance of ZF, MMSE and ML detectors for 2x2 

MIMO configurations. One can observe several happenings. The ML curve achieves diversity 

order equal to N as stated in the previous chapters, and so it serves as comparison because it 

achieves the best possible performance. Note that these simulations were run with few 

antennas as ML is a heavy detection algorithm, hence the 2x2 system. Looking now at ZF and 

MMSE curves, it is possible to observe that MMSE performs slightly better than ZF, because 

it solves the CVP problem by relaxing the search in the continuous space but also for 

introducing a term that penalises large ‖ ‖ and is proportional to the energy of the noise. 

Regarding the inclination of the curve, both ZF and MMSE maintain a steady -1 slope which 

corresponds to a decrease of SER by a factor of 10 for every 10dB of SNR. It can also be 

noticed that 16-QAM constellation suffers from a power penalty of some dB when comparing 

to the 4-QAM curve. 
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Figure 13 - ZF, MMSE and ML detection with 2 2 antennas for 4-QAM. 

 

Figure 14 - ZF, MMSE and ML detection with 2 2 antennas for 16-QAM.  
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 Detection by Ordered Successive Interference Cancellation 4.4

Linear receivers are limited as they fail to remove the interference between signals 

from each antenna. More ingenious detection methods that manage to remove the interference 

end up being nonlinear. A popular approach is called ordered successive interference 

cancelation (OSIC) also known as V-BLAST [16]. 

In this algorithm the detection side of spatial multiplexing requires some attention on 

its implementation as each transmitted symbol is received by all the receive antennas. OSIC 

then uses linear detection to infer the first modulated symbol of the layer with least noise and 

subsequently assumes this detection was correct, continuing to detect the symbols from the 

remaining layers, replicating the interference created by the detected symbol and subtracting 

from the following layers. This procedures goes on until all symbols are detected. 

The decision criterion at each stage is to select the layer that enhances less the noise 

power after the linear detection, resulting in a minimised error probability for that layer. 

Without ordering this selection there would be a performance drop [17]. 

It is possible to implement an OSIC detector in several ways. In this thesis a QR 

decomposition method applied on a ZF will be presented, which basically translates the 

channel matrix H into an upper triangular matrix, to then perform the search among the 

simplified layers. 

A QR decomposition is performed on the channel matrix as     , where Q is an 

      orthonormal matrix and R is an       upper triangular matrix. Then the detection 

problem can be seen as  

  ̂        ‖      ‖  (36) 

Thanks to the upper triangular structure of R , the detector performs a layered-search 

from the     layer to the    layer to find optimal solutions 

One problem of this strategy is that if one symbol is incorrectly detected, all the 

following symbols are likely to be incorrect as well. 

Instead of ZF equalization it is also possible perform linear MMSE equalization to 

obtain a MMSE version of the OSIC receiver, by adjusting the equation 4.16 

The performance of the OSIC receivers described above can be seen in figures 15 and 

16.The OSIC based on ZF and MMSE is denoted as OSIC-ZF and OSIC-MMSE. One can see 
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that these linear OSIC receivers still obtain curves with slope -1 as OSIC does not improve 

diversity but a large power gain. This gain can be observed by comparing figures 17 and 18 

with the results obtained in the previous section, however the simulations on figure 15 and 16 

were run with a 2x2 MIMO system and here we are analysing a 3x3 MIMO configuration, so 

the gain is higher than if comparing under the same circumstances.  

 

Figure 15 - OSIC-ZF and OSIC-MMSE detection with 3x3 antennas for 4-QAM. 
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Figure 16 - OSIC-ZF and OSIC-MMSE detection with     antennas for 16-QAM. 
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 Lattice Reduction-Aided Detection 4.5

On the previous chapter we discussed about lattice bases generation, and realised that 

the same lattice can be created by an infinite possibility of bases. However, some bases have 

properties that enhance the performance of the standard receivers, as their decision regions are 

closer to the ideal Voronoi regions. Intuitively this opens a door where one wants to 

preferably use a better lattice base in order to achieve better results, and this is the motivation 

for the lattice reduction-aided (LRA) detection. 

Lattice reduction can be implemented by algorithms like LLL and KZ, and these 

algorithms try to find a “better” base for a lattice, which consists of a base whose generating 

vectors are more orthogonal to each other than the original ones. This new lattice is usually 

referred to as     and relates to   by 

          (37) 

where   is an unimodular matrix, meaning that it is composed of integer entries and has 

|    ( )|   . Note that   1 is also unimodular. 

Inserting the concept of lattice reduction in MIMO we can now re-write the standard 

system model 

                  (38) 

Considering the equation 37 and defining       ,  we obtain the reduced system 

           (39) 

In this model,    is a modified data vector that can be detected with a lower SER than 

would   without Lattice Reduction, and this is true for any type of receivers that follow LR 

pre-processing, meaning that all of the receivers analysed in this thesis are eligible for LRA 

detection. 

The original data vector   can be recovered from   according to 

 

     1           (40) 
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An adjustment has to be done before utilizing LR tools because the  -QAM 

constellations used in this dissertation are defined without the origin and have non unitary 

distance between the symbols, so a translation of the constellation is needed to apply lattice 

reduction. This translation is done by modifying the received vector 

      
 

 
(    ) (41) 

where   denotes a column vector of   complex elements all equal to 1+j. 

The LLL algorithm was first derived for integer lattices and then applied to real 

lattices. In this thesis a complex LLL algorithm was implemented, and it helps reducing the 

complexity of MIMO detectors, even while taking the pre-processing into account. 

The pseudo-algorithm used to simulate LRA receivers is shown in table 3. 

 

Table 3 Pseudo-code of LRA detection. 

1: Shift and scale the constellation to have zero as a lattice point: 

     
 

 
(    )   

  [           ⏟        
 

]

 

  

2: Reduce the lattice basis H using CLLL: 

[      ]      ( )  

3: Apply some detector to the CVP defined by (         ) 

        (         )  

4: Using   and   estimate the symbol in the original coordinate system 

 ̂      [ ]      
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The performance of LRA receivers is now presented in different configurations. A 

first analysis was performed on the linear receivers with lattice reduction which can be seen in 

figures 17 and 18. Comparing the results of LRA-ZF and LRA-MMSE with the results from 

the last section OSIC-ZF and OSIC-MMSE, one can conclude that the LRA allows a 

desirable and visible gain and that gain is even more accentuated as the QAM constellation 

goes from 4 to 16. 

The second analysis of LRA receivers was performed on the linear receivers, but this 

time with OSIC schemes, leading to figures 19 and 20. Comparing the results of these two 

figures with figures 17 and 18, one can observe that the introduction of the OSIC approach 

allows a slight gain, however it is much less noticeable than the gain obtained by the 

increment of the LRA technique in the first two figures. 

Summarising the information introduced hitherto, one should note that LRA-OSIC-

MMSE receiver is the one that allows the best performance so far. However, an experimental 

approach will be made upon LRA-OSIC detection algorithms, which consists of doing a 

randomized detection of the OSIC algorithm, in an attempt of achieving results beyond LRA-

OSIC receivers.  
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Figure 17 - LRA-ZF and LRA-MMSE detection with     antennas for 4-QAM. 

  

Figure 18 - LRA-ZF and LRA-MMSE detection with     antennas for 16-QAM. 
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Figure 19 - LRA-OSIC-ZF and LRA-OSIC-MMSE detection with     antennas for 4-QAM

 

Figure 20 - LRA-ZF and LRA-MMSE detection with     antennas for 16-QAM 
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 Randomized Decoder 4.6

While lattice reduction-aided decoding has a relatively small complexity, its 

performance exhibits a widening gap to the maximum likelihood curve as the dimension 

increases. In order to improve its performance, this thesis presents an improved algorithm that 

can shorten that gap to ML detection, which is a randomized version of SIC,  first proposed 

by Liu et al. (2011), and based on the work by Klein (2000).  

Previously, an OSIC algorithm was described where a standard rounding to the nearest 

Gaussian integers was applied. However, in this algorithm, the standard rounding will be 

replaced by Klein’s randomized rounding, and a few candidate lattice points are sampled from 

a Gaussian-like distribution over the lattice. To find the closest lattice point, Klein’s algorithm 

is used to sample some lattice points and the closest among those samples is chosen. Lattice 

reduction increases the probability of finding the closest lattice point, and only needs to be run 

once during pre-processing [18]. Furthermore, the sampling can operate very efficiently in 

parallel. 

One should calculate 

  ̂            (
 ̂   ∑    ̂ 

  
     

    
), (42) 

where function           ( ) rounds the real and imaginary parts of r (denoted as      and 

   ) to integers     and     , respectively, according to the discrete Gaussian distribution 

defined as 

  (     )  
   (       )

∑    (       )  
    

 (43) 

For the real part and  

  (     )  
   (       )

∑    (       )  
    

 (44) 

for the imaginary part. This Gaussian distribution is usually similar to figure 21,  
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Figure 21 – Discrete Gausssian Normal Distribution obtained from (43) and (44) with test 

values. 

 

The parameter    is computed as 

    
    ( )

    ( 
 
   )

      
 
  (45) 

with ρ being another parameter whose optimum value can be obtained from 

   (  )
   
  (46) 

The number of candidate lattice points that are considered in the algorithm is 

represented by K. The candidate list is then built by repeating K times the procedure for 

computing a lattice point with Equation 42. If the transmission is uncoded the final estimate 

will correspond to the closest of the K lattice point candidates. Due to the randomized nature 

of the algorithm, to avoid the possibility of the final estimate being further away than the one 

produced by the OSIC decoder, one of the K candidates should be obtained through standard 

rounding. The final transmitted vector estimate is computed by scaling back the obtained 

solution into the original lattice. 

Figure 22 depicts the performance of randomized decoding in comparison to the 

traditional ZF inverter and the standard OSIC detector. A 3x3 MIMO system was considered 

with 4 QAM modulation. 
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Figure 22 - ZF, MMSE and Randomized Decoder with     antennas for 4-QAM 

 

One may observe how the randomised version of OSIC captures the full diversity available, in contrast 

to traditional deterministic OSIC based on deterministic rounding at each iteration. The price to pay is 

the need to generate K candidates to select from, basically multiplying the number of operation by that 

factor K.  
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5 Expanding the MIMO limits 

 

 

In this chapter the limits of conventional MIMO 

receivers are tested for large systems, and some 

new approaches are made in an attempt to 

increase the number of antennas at both 

terminals. 
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 Scaling up MIMO  5.1

From chapter 2 we know that the more antennas the transmitter/receiver is equipped 

with and the more degrees of freedom the propagation channel can provide, the better the 

performance in terms of data rate or link reliability. There are a few wireless broadband 

standards based on this knowledge, like the LTE standard that allows for up to 8 antenna ports 

at the base station to take advantage of all these features. On a channel that varies rapidly as a 

function of time and frequency, and where circumstances permit coding across many channel 

coherence intervals, the achievable rate scales with min (nt, nr) log (1+SNR).The gains in 

multiuser systems are even more impressive, because such systems offer the possibility to 

transmit simultaneously to several users and the flexibility to select what users to schedule for 

reception at any given point in time [19].  

However, the price to pay for obtaining these new data rates with MIMO is increased 

complexity of the hardware and energy consumption of the signal processing at both ends. In 

point-to-point communications the complexity at the receiver requires more attention than the 

complexity at the transmitter because for instance, the complexity of optimal signal detection 

grows exponentially with NT [20] [21]. On the other hand, in multiuser systems the greatest 

concern is on the complexity at the transmitter, as the coding schemes used to transmit 

information simultaneously to more than one user while maintaining decent levels of inter-

user interference are rather complicated. 

A decade ago, the large antenna arrays regime, when NT and NR increases, has not got 

beyond academic study, in that some asymptotic capacity scaling laws are known for ideal 

situations. However, this view is changing due to a few important system aspects in the large 

terminals regime have been discovered. For example, [22] showed that asymptotically as NT 

→ ∞, and under realistic assumptions on the propagation channel, with a bandwidth of 20 

MHz, a time-division multiplexing cellular system may accommodate more than 40 single-

antenna users that are offered a net average throughput of 17 Mbits per second both in the 

reverse (uplink) and the forward (downlink) links, and a throughput of 3.6 Mbits per second 

with 95% probability! These rates are achievable without cooperation among the base stations 

and by relatively rudimentary techniques for CSI acquisition based on uplink pilot 

measurements. 

When talking about very large MIMO, one thinks of systems that use antenna arrays 

with hundreds or more antennas. Very large MIMO entails a considerable number of antennas 
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simultaneously serving a much smaller number of terminals. The disparity in number emerges 

as a desirable operating condition and a practical one as well. The number of terminals that 

can be simultaneously served is limited by the inability to acquire channel-state information 

for an unlimited number of terminals. Larger numbers of terminals can always be 

accommodated by combining very large MIMO technology with conventional time and 

frequency division multiplexing via OFDM. It is expected that in very large MIMO systems, 

each antenna unit uses extremely low power, in the order of mW. Ideally, the total transmitted 

power should be kept constant as one increases   , meaning that the power per antenna 

should be proportional to 1/NT. It could also be possible to reduce the total transmitted power, 

but the need for multi-user multiplexing gains, errors in CSI, and interference would prevent 

these power savings in practice. Even considering these problems, the possibility of saving an 

order of magnitude in transmit power is desirable because it would open the possibility of 

achieving a better system performance under the same power constraints.  

Another concern when studying very-large MIMO is the energy consumption of the 

cellular base stations. However, very-large MIMO designs can be made extremely robust to 

the failure of one or a few of the antenna units, meaning that a punctual failure would not 

harshly affect the system. A malfunctioning individual antenna can be swapped, in contrast to 

classical array designs, which use few antennas fed from a high-power amplifier. 
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 Large dimensional channels 5.2

Although the main advantages of large MIMO systems stand upon the increase of the 

diversity gain and data rate, there are also other advantages given by large dimension systems 

that cannot be seen in smaller systems, and are a key factor for the existence of large MIMO 

arrays. 

When the number of antennas at the terminals increases, the matrix H becomes larger, 

and the distribution of the singular values becomes less reliant on the entries of the channel 

matrix as long as they stay independent and identically distributed  (iid) random variables.  

This is a known result of the Marcenko-Pastur law [23] and states that if the entries of 

an nr × nt matrix H are zero mean iid with variance 1/  , then the empirical distribution of 

the eigenvalues of     converges almost surely, as NT, nr →∞ with NT/NR → β, to the 

density function. 

A direct result of the Marcenko-Pastur law is that very tall or very wide channel 

matrices tend to be very well conditioned, meaning that the eigenvalue histogram of a single 

realisation converges to the average asymptotic eigenvalue distribution, resulting in a more 

deterministic channel as the channel dimension increases. This is usually called “channel 

hardening” in the literature [24], and its behaviour at large dimensions can be observed in the 

figure 23, where     was plotted with NT=NR=30, 100 and 300, the entries of H are iid 

Gaussian entries with zero mean and unit variance. 

The main property to retain is that as H grows in size, the diagonal terms of     

become increasingly larger than non-diagonal terms, resulting in a near-diagonal matrix. 

 

(a) 
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(b) 

 

(c) 

Figure 23 - Intensity plots of     matrices for (a) 30×30 MIMO, (b) 100 × 100 

MIMO, and (c) 300 × 300 MIMO channels.  
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 Testing the limits of the conventional receivers for large-MIMO 5.3

systems 

The discovery of channel hardening enabled some advantages in signal processing, 

more specifically in large dimension MIMO. One of these advantages rely on the fact that the 

inversion of large random matrices can be efficiently approximated with series expansion like 

Newman Series [25] and deterministic approximations. This is helpful because the linear 

detectors studied in this thesis like Zero-Forcing and minimum mean square error detectors 

perform matrix inversions in their algorithmic process, thus making them unviable detectors 

for very large systems, due to the excessive computation requirement of inverting for example 

100x100 matrices.  

However, due to its simplicity, we can still obtain decent results for large antenna 

arrays using these two simple detectors. Channel hardening turns these low complexity 

detection algorithms suited for large channels. 

Figures 24 and 25 show the performance of ZF and MMSE receivers but this time in 

large MIMO configurations. This time the ML curve was dismissed as it is a really heavy 

decoder, making it not feasible for comparison. The modulation chosen for this test was also 

4-QAM as it’s the cheapest modulation, and this test is mainly focusing on hardware 

performance, hence the focus on cheap algorithms in order to reach large dimensions. 

However, one can note that even at a high antenna regime, the linear detectors can 

maintain a steady slope. This is on pair with the previous results and the literature that states 

that the linear receivers can only maintain a slope of -1. As expected, increasing the number 

of antenna terminals does not influence the curve slope but rather the SER, that is slightly 

degraded by the increasing dimensions. 
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Figure 24 - Detection 10x10 antennas with 4-QAM using linear receivers. 

 

Figure 25 - Detection 30x30 antennas with 4-QAM using linear receivers. 
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Another direct consequence from channel hardening and that could already be 

observed from the figure 23 is that when dimensions grow big, the Gram matrix tends to be 

near diagonal. By plotting the Frobenious distance of a Gram matrix to the correspondent 

Identity matrix ‖     ‖     we got the following figure. The script created random 

Channel matrices from nt=1 up to 400. 

 

Figure 26 – Plot of the Euclidean distance ‖     ‖      of a Gram matrix to an Identity 

matrix. 

 

Observing this figure 26 we can note that as the number of antennas increases, the 

distance to the Identity matrix gets smaller, limited by an asymptotic zero. 

This similarity to diagonal matrices also allows us to obtain some results by applying 

the standard SVD precoding to large channels. And again, the results are feasible due to 

channel hardening. 

Note that even though the number of antennas more than doubles, the performance of 

the detector does not alter much, meaning that it is a good and scalable algorithm. 
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Figure 27 - Detection 12x12 antennas with 4-QAM using SVD channels. 

 

 

Figure 28 - Detection 30x30 antennas with 4-QAM using SVD channels. 
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6 Conclusions  
 

 

In this chapter a wrap up of the thesis is made, 

and then some areas of possible future research 

are identified. 
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One of the objectives of this work was to exploit certain channel characteristics that 

would make MIMO systems with large antenna arrays possible. The two main aspects that 

were studied in order to achieve large antenna systems are diversity and spatial multiplexing, 

which were conceptually described on chapter 2, and then put into practice on chapters 4 and 

5, testing popular receivers like ZF, MF and some non-linear variations with OSIC and LRA. 

Although the receivers that achieve the best performance are LRA-OSIC-MMSE and a 

randomized version of it, these algorithms ended up being computationally heavy as the 

number of antennas at the terminals increases, meaning that those were not scalable beyond 

10 antennas.  

In order to obtain large antenna arrays working for MIMO systems, we had to bet on 

cheaper algorithms like plain ZF and MMSE, and more ingenious detection methods 

involving channel information feedback that would allow the processing of the channel 

information at the receiver. By having access to the channel at the transmitter, it would then 

be possible to take advantage of the channel properties, creating individual parallel data pipes 

that are directly related to the channel matrix Eigen values. This channel simplification 

enables the use of large antenna arrays on MIMO systems, even though channel state 

information at the transmitter is required. 

Throughout this work, some opportunities were identified as possible improvements 

for further development. In chapter 5, the Newman series expansion was pointed as a way of 

decreasing the complexity of the inversion of matrices through a numeric approximation. This 

approximation may allow the inversion of large matrices in a feasible time, possibly enabling 

the use of linear receivers in very large antenna arrays. 

Another possibility for achieving very large MIMO systems is to exploit the 

randomized decoder properties. This algorithm achieves full diversity at little complexity 

even for large MIMO configurations, so it might possible to take advantage of this fact and 

increase the dimension of the arrays used in MIMO systems. 
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