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Abstract—  The superposition of waves caused by multipath 

propagation was for a long time considered an unavoidable 

nuisance in radio communication links. The discovery that 

multipath interference was central to enable much larger data 

rates was a breakthrough at the turn of the century. Multiple-

input multiple-output (MIMO) spatial multiplexing (SM) allows 

unprecedented efficiency in the use of the radio spectrum, 

however, this comes at the cost of high complexity at the receiver 

because the underlying symbol detection problem belongs to the 

class of problems of highest computational complexity. In 

general, lattice problems are simple to describe but rather hard 

to solve optimally; finding algorithms to deal with the problem 

has been a central topic in the last decade of research in MIMO 

SM. This paper contributes to a deeper understanding of the 

most important types of receivers for SM with a unifying lattice 

perspective. Capitalising on that, two novel receivers are 

proposed. The geometric relation between the primal and the 

dual lattice is clarified, leading to the proposal of a pre-

processing technique that greatly reduces the number of 

candidate solutions via geometric considerations. Then, looking 

at lattices from a group theory perspective, it is shown that it is 

possible to approximate the typical lattices encountered in 

MIMO by a lattice having a trellis representation, translating the 

problem for the first time into one manageable by the Viterbi 

algorithm, well known to the semiconductor industry. 
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I. INTRODUCTION 

A. From MIMO theory to industry standards 

The last ten years of research in communication 
engineering have been characterised by extensive research in 
MIMO. Reaching what Shannon found to be possible for the 
white additive Gaussian channel was a research task spanning 
45 years (from 1948 to 1993). On the other hand, the intense 
research on MIMO since the late 1990’s achieved theoretical 
breakthroughs on MIMO rather more quickly. In fact, in the 
last ten years, the research community and the industry were 
able to put in practice many of the predictions of the theory, 
breeding a new generation of wireless communication 
standards, for both indoors and mobile systems. One very 
important contribution to the dramatic increase of the data 
rates in these new systems comes from the fact that in MIMO 

SM the capacity linearly increases with min( , )
T R

N N , i.e., 

with the minimum number of antennas at each side of the link, 

where 
T

N  and 
R

N  are the number of antennas at the 

transmitter and at the receiver, respectively. 
MIMO, along with larger channel bandwidth, underpins the 

physical layer of the fourth generation (4G) wireless networks 
[1], such as IEEE 802.16 (dubbed WiMAX [2]) and Long 
Term Evolution (LTE) [3]. In its first releases, LTE relied on 
MIMO mostly for the downlink (i.e., from the base station (BS) 
to user equipment) [4], using 4 layers in the downlink (DL). In 
the latest release 10 (known as LTE-Advanced), the role of 
MIMO also became important in the uplink (UL). Indeed, 
MIMO is utilised in both uplink and downlink of the IEEE 
802.16m standard (WiMAX profile 2.0). The LTE-Advanced 
release considers DL with eight layers and uplinks with up to 
four layers, i.e., a BS with eight or more antennas and user 
terminals with each 4 antennas [5]. Improving the detection 
performance with affordable complexity in terminals with 8 
layers (with 8×8 antennas) is still today a very important 
problem [6] (p.181). With these configurations LTE-Advanced 
achieves spectral efficiencies of 30 b/s/Hz in the DL and 15 
b/s/Hz in the UL [7] (p.86), [6] (p.181). 

Presently, MIMO is entering the vast domestic market via 
802.11n [8], [9] (ch.7), the latest generation of Wi-Fi, 
designed for a peak rate of 600 Mbps (using 40 MHz 

bandwidth and 4×4 antennas), which is the first commercial 

product to be based in MIMO-OFDM. The same combination 
of MIMO-OFDM has also enabled other standards in the IEEE 
802.11 universe [10], particularly those specifically designed 
for high throughput. Notably, the first wireless standards for 
data transmission rates over 1Gbps are the 802.15.3c [11] 
(operating at millimetre waves and using beamforming with 
antenna arrays) and the 802.11ac [12] (using eight parallel 
layers in the 5GHz band), both incorporate multiple antennas. 
These standards, which are scheduled to be concluded by early 
2013 [10], will put in to practice the dream “gigabit wireless” 
anticipated by Paulraj et al. in 2004 [13]. 

Undoubtedly, MIMO research started within wireless 
communication and remains until today a prolific research 
community. However, it is worth noting that  the concept of 
SM has  also started to be studied  for wave propagation in 
(multi-modal) optical fibres [14] and, more recently, the 
concept of taking advantage of radio interference has also 
been extended to the traditional bundles of cables in wired 
telecommunication networks, turning crosstalk from a 
nuisance into an ally to increase the transmission capacity [15]. 



 
 

 
Fig. 1: Spatial multiplexing with real inputs. nℤ  is transmitted and then skewed by the effect of the channel. 

 
How to reduce the complexity that the closest vector 

problem (CVP) places at the receiver side is a major challenge, 
and is the main concern of this paper. 

B. Outline of the Paper 

In the next section the MIMO SM setup is established and 
the detection problem it brings is defined. 

Section III introduces the concept of a lattice and clarifies 
the geometric relationship between a lattice and its dual, which 
is a central idea to understand some of the stages involved in 
the two new types of receivers that will be later presented in 
Section V and Section VI. 

Section IV presents the most important detection techniques 
for MIMO SM: linear filtering, ordered successive 
interference cancellation (OSIC), lattice-reduction-aided, and 
the sphere decoding concept. These techniques are presented 
under a common lattice interpretation where each different 
detection strategy is shown to consist of some sequence of 
geometrical manipulations of the lattice structure. 

Section V presents a lattice detection strategy for SM which 
takes advantage of a pre-processing stage based on the 
geometric relations between the points in the primal lattice and 
the ones in the dual lattice.  This pre-processing finds a set of 
successive minima in the dual lattice, and is only required at 
each channel update. The subsequent symbol detection 
algorithm exclusively involves a linear transformation (the 
pseudo-inverse) in order to generate a list of candidate 
solutions for the underlying CVP. The receiver outperforms 
ordered successive interference cancellation and, in the low 
signal-to-noise ratio (SNR) regime, also outperforms lattice-
reduction-aided receivers at the expense of a “true” sphere-
decoder that runs only once per channel update, and not for 
each received vector. 

It is known that some lattices have a trellis representation, 
however, those lattices require very particular geometries that 
are not found in lattices randomly generated. Section VI shows 
that for the typical number of dimensions used in MIMO 
communication, with high probability, there exists a synthetic 
lattice that is a member of the family of lattices that have a 
trellis representation and which is sufficiently close to any 
given random lattice. For that purpose we present a method to 
find a trellis-oriented basis for a given random lattice. The 

basis vectors of the synthetic lattice and the basis vectors of 
the original lattice are close to each other and, for finite 
alphabets, the two lattices are roughly the same in the region 
of interest. Therefore, the optimal decision (Voronoi) regions 
of both lattices chiefly overlap. A linear transformation then 
focuses the original lattice onto the synthetic one, known to 
have a trellis representation. This minimizes the distortion of 
the Voronoi regions associated with maximum likelihood 
detection (MLD) and therefore the performance attained in the 
MIMO-CVP is close to optimal. 

II. SPATIAL MULTIPLEXING: BASIC DEFINITIONS 

A. System Model for Spatial Multiplexing 

In a MIMO communication channel there is an input vector 

x  (at a transmitter with 
T
N elements) and an output y  vector 

(at the receiver, with 
R
N elements), which is obtained from x  

by means of a linear (matrix) transformationH . When using 
QAM symbols in each antenna of the transmitter, the set of 
possible signal can be seen as a set of points carved from a 
squared multidimensional lattice, the most simple lattice 
structure one can have. After passing through the channel, this 
structure is linearly transformed, which geometrically 
corresponds to warping the squared structure, as suggested in 
Fig. 1. Furthermore, the detection of y  is perturbed by some 
noise vector,n , of the same size. In detail, in MIMO SM, with 

R T
N N≥ , the relationship between the transmitted vector 

c
=x

,1 ,2 ,
[ , , , ]

T

T

c c c N
x x x…

1
T
N ×

∈ ℂ  and the received vector 

,1 ,2 ,
[ , , , ]

R

T

c c c c N
y y y= …y

1
R

N ×
∈ ℂ  is modelled in the 

baseband as 

 
c c c c
= +y H x n , (1) 

where R T
N N

c

×
∈H ℂ  is the channel matrix with its entries 

ij
h  

representing the complex coefficient associated with the link 
between he ith receive antenna and the jth transmit antenna. 

In the case of Rayleigh flat fading channel, hij are taken 
from a zero-mean circularly symmetric complex Gaussian 
distribution with unitary variance (i.e., variance 1/2 in both the 
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real and imaginary components). Furthermore, the noise added 
to each entry of the received vector is modelled by the column 

vector 
1

,1 ,2 ,
[ , , , ] R

R

NT

c c c c N
n n n

×
= … ∈n ℂ  with independent 

circularly symmetric complex Gaussian random variables 

taken with zero mean and variance 2
n
σ  (corresponding to a 

variance 2 / 2
n
σ  in both real and imaginary components). For 

independent input data, its covariance is 
x
=R  { }H

c c
E =x x

2
x n
σ I . Similarly, the covariance of the independent noise 

vector is 
n
=R { }H

c c
E =n n 2

n n
σ I . The energy of the 

complex transmitted symbols is assumed to be 2
,

{ } 1
c i

E x = . 

The real symbols in each dimension are taken from an 

alphabet A, with M  symbols, in the case of M-QAM 

modulation in each antenna, which is the modulation type 
considered in this paper, where 

 
{

}

3
( 1), , 5, 3, 1,

2( 1)

1, 3, 5, ( 1) .

M
M

M

= − − − − −
−

+ + + + −

⋯

⋯

A
 (2) 

It is not difficult to prove that by stacking the real and 
complex parts of the vectors (respectively denoted by ℜ  and 
ℑ ), and by appropriate construction of a modified channel 
matrix, the problem can equivalently be described by means of 
real variables as 

 ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
cc c cc

c c c cc

= + ⇔

      ℜ −ℑℜ ℜ ℜ      ⇔ = +      ℑ ℑ ℜ ℑ ℑ            

y Hx n

H Hy x n

y H H x n

 (3) 

with all vectors now real (hence, the “c” subscripts in the 
variables are dropped from now on).  
 The conversion in (3) makes possible to take any lattice 
defined in a complex domain (such as the ones arising from 
signalling with electromagnetic waves), and transform it into 
full-real lattices with the double of dimensions. Henceforth, 

this paper will deal with real lattices in 2
R

N  dimensions. 

B. Diversity and Multiplexing 

From Shannon we know that, in the AWGN channel, a 
symbol error rate (SER) curve as a function of the signal to 
noise ratio (SNR), ρ , can be as steep as one wants. In the 

limit, the SER curve, )(
s
P ρ , can have an infinite negative 

slope. For the Rayleigh fading channel it is well known that 

)(
s
P ρ  exhibits a 1−  slope in the uncoded SISO case, that is, 

one finds that 1)(
s
P ρ ρ−∝ . One door that MIMO opens is the 

possibility of increasing (in modulo) that slope, i.e., obtaining 
a faster reduction of the error rate as SNR increases. One 
defines the diversity order, corresponding to the slope  

 
log( ( ))

lim
log( )

s

SNR

P
d

ρ

ρ→∞
= − . (4) 

This diversity order measures how many statistically 
independent copies of the same symbol the receiver is able to 
receive. In brief, this amounts to the number of independent 
fading coefficients that the receiver can average in order to 
produce a reliable estimate of a transmitted symbol. Not 
surprisingly, the maximum available diversity that can be 

attained is max T R
d N N= . 

In the MIMO general case, this gain is defined as 

 
SER

log( )
lim

log( )

R
g

ρ→∞
=  (5) 

When plotting the symbol error rate (SER) versus the signal 
to noise ratio (SNR), the existing diversity d in the 
communication link is simply the slope (in the asymptotic 
regime) of the SER curve. On the other hand, the 
interpretation of the multiplexing gain in a typical SER plot is 
not so straightforward. The metric g indicates how the 
capacity increases with the SNR, which is a common 
representation in information theory since Shannon but is less 
useful in practice. In terms of the SER, the multiplexing gain g 
measures how fast spectral efficiency can increase with the 
increase of SNR while keeping the same error rate and 
corresponds to the maximum number of independent layers or 
parallel channels and is limited by 

 max
min( , )

T R
g N N= . (6) 

In a theoretical breakthrough paper [16], Zheng and Tse 
showed that there is a trade-off between d and g, i.e., the 
famous diversity-multiplexing trade-off (DMT): increasing 
one leads to a decrease in the other. 

C. Optimal reception problem 

The main research problem in spatial multiplexing in the 
last ten years has been detecting x  given the noisy 
observation y  in order to minimise the symbol error rate 
(SER). For that problem, the maximum a posterior probability 
(MAP) of x  is 

 ( )
( )

( )

( )
argmax argmax

P P
P

P
= =

∈ ∈

x y x
x x y

yx xA A
 (7) 

As all vectors x  are equiprobable, ( )P x y  is a sufficient 

statistics for the detection process. Therefore, MAP detection 
can be reduced to maximum likelihood (ML) without any 
performance loss. For the i.i.d. Rayleigh channel with i.i.d. 

transmitted symbols with both the 
x
R and 

n
R given above, 

one has the N-dimensional probability distribution 

 ( )
( )

2

/2 2
2

1
exp

22
N

n
n

P
σπσ

  −   = −    

y Hx
x y , (8) 



 
 

and therefore the detection problem becomes that of 
minimizing the exponent in (8): 

 { }2ˆ argmax
ML

= −
∈

x y Hx
x A

. (9) 

This problem now has a clear geometrical interpretation: 
the optimal x  (the one that best explains the observation y ) 
is the one that, among all possible input vectors, and after the 
linear transformation, generates the closest vector Hx  (in the 
Euclidian sense) to the received vector y . This problem is 
known in integer optimisation as integer least squares and in 
lattice theory as CVP (as mentioned above): “given a target 
vector off the lattice, y , which point in the lattice is the 
closest one?”. 

The algorithmic complexity of the CVP is proven to be NP-

hard [17], which, in the current state of understanding of the 
complexity of algorithms, places it in the worst tier in the 
hierarchy of complexity classes. Notice that this involves 
measuring the Euclidian distance of the received vector y  to 

all the possible n

c
A transmit points in the (finite) complex 

lattice (or 2n
A  in the real equivalent lattice). For example, for 

a 4×4 configuration with 64 QAM (i.e., 8-PAM per real 

components in a 8-D lattice), this amounts to a comparison of 
464 16,777,216=  distance metrics. The same number arises 

when using the real equivalent model (3), as a result of 88

metric comparisons . This is why the 8×8 configuration for 

LTE receivers is still a major open challenge in 2012 [6]. 
 One should not conclude from this that any hope of finding 

accurate solutions should be deemed unrealistic. In fact, it will 
be seen throughout this work that very good approximations to 
the optimal solution can be found, especially when the number 
of dimensions is small [18]. As the number of dimensions 
grows, the complexity of the problem, measured as the 
number of operations, grows exponentially (this is what is 
known as “the curse of dimensionality” [19]); however, the 
complexity of some approximate detection techniques grows 
only polinomially (zero-forcing, MMSE, SIC, and LLR-based, 
as presented in Section IV). 

III. PRIMAL AND DUAL LATTICE GEOMETRY 

A. Definition of a Lattice 

Lattices are discrete subgroups in nℂ . The most common 

manner to specify a lattice Λ  is based on on a set of vectors 
which are the columns of a generator matrix H : 

  
1

: , ,
n

n n

i i i i
i

x x
=

    Λ = ∈ = = ⋅ ∈ ∈ 
    

∑y y h H x hℂ ℤ ℂ . c 

The coordinates of the lattice points are thus integer 
combinations of the columns of the complex generator matrix 
H , as exemplified in  Fig. 2. 

Given a certain basis of a lattice, the fundamental region 
that is associated to that basis is defined as 

 
Fig. 2: A lattice in 2ℝ and the fundamental region associated with a particular 
basis. 

 { }( ) : 0 1
i
x= < <H HxR . (10) 

The fundamental region cannot contain any lattice point 
inside it (c.f. Fig. 2). If that happens, then the set of vectors is 
not a basis of the lattice but a basis of one of its sublattices. A 
sublattice ′Λ is also a lattice and the volume is 

vol( ) vol( )′Λ > Λ
 
(the technical definition of the volume of a 

lattice will shortly be given). 
Note that different sets of vectors may generate the same 

lattice. Indeed, the number of admissible bases for a lattice is 
infinite; it is easy to infer from Fig. 2 that it is always possible 
to select some point further distant from the origin to replace a 
generator and still have a fundamental region without 
including any lattice point in its interior. Moreover, all these 
different bases are related by unimodular transformations, as it 
will be described below. 

The region of the space where the lattice is embedded that 
contains all the points in the span of the lattice (i.e., in the 
continuous Euclidian space where the lattice exists) which are 
closer to a given lattice point x  than to any other point in the 
lattice is called the Voronoi region and is defined by 

 { }( ) span( ) :Λ = ∈ Λ ∀ ∈ Λ − < −z y x z y zV . (11) 

This (open) region is a characteristic of the lattice and 
independent of any particular generating matrix, and is the 
most interesting fundamental region (amid the infinite number 
of other possible fundamental regions one can define to tile the 
entire space) as it constitutes the optimal decision region for 
the closest vector problem in a lattice. 

The Gram matrix of a lattice is defined by the columns of 
H as (in the complex case the Hermitian operator replaces the 

transposition) as T=G H H . 
By construction, the Gram matrix contains all the possible 

inner products between all the generator vectors: 

,
ij i j
g = h h ; in particular, the diagonal elements are the 

squared norms 
2

i
h . This fact implies that G is symmetric 

and positive definite. 

B. The Geometry of the Dual Lattice 

Every lattice (said to be the primal lattice) has a dual lattice, 
also known as the polar lattice or, more commonly, as the 
reciprocal lattice. Note that these names were already in use 

D
im
e
n
s
io
n
 2

R



 
 

in the early 70’s [20] (p.24). Since then, the name polar has 
fallen into disuse, though reciprocal can still be found in some 
literature.  The dual lattice is traditionally defined for real 
lattices, though the definition has also been extended to 
complex lattices [21]. Given the intuitive geometrical 
interpretation that is possible in the real domain, the dual 
lattice is usually defined for real lattices as 

 { }: , ,
D

Λ = ∈ ∈ ∀ ∈ Λz z x xℝ ℤ . (12) 

The dual lattice can also be expressed in terms of the dual 

basis ( )DH  as 

 ( )
( )

: ,

D

T
n

D

+

     Λ = ∈ = ∈ 
     H

z z H x xℝ ℤ
�������

. (13) 

where +H  is the Moore-Penrose pseudo-inverse 

 1( )H H+ −=H H H H . (14)  

 Hence, 

 

( )
1

( )D T T
−

=H H H H
.

 

(15) 

In fact, for 
1 2
, n∈x x ℤ , 

( ) 	
( )

1 2 1 2 1 2
, .

D

T
T T T+ +

∈Λ
∈Λ

= = = = ∈

y
z

z y z x H x Hx x H Hx x x ℤ
���������

 It is also possible to show that each point in the dual lattice 
can be written as an integer combination of the columns of

( ).DH  Let us focus on the case of full rank real matrices 

where 1+ −=H H . Denoting the rows of 1−H by 
1 2
, , ,

n
r r r⋯ , 

for any point ( )D∈ Λz  it is possible to write 

 
	 	 	

1

1 1 2 2
( ) ( ) ( ) ,

T T

T T T

n n

−

∈ ∈ ∈

=

= + +

z z HH

z h r z h r z h r

ℤ ℤ ℤ

⋯  (16) 

which shows that the point in the dual lattice is defined by a 

linear combination of the rows of 1−H , i.e., a linear 

combination of the columns of 1( )T−H . These arguments can 

be extended to the cases where the Moore-Penrose inverse is 
required and also to complex lattices. 

One interesting relationship between the two bases is that 

 ( )( )
T

D =H H I , (17) 

which is equivalent to saying that 
( )

,
, D

i j i j
δ=h h , using the 

Kronecker delta. 
The volumes of the primal and the dual lattice are related by 

( ) ( )
1

vol vol( )
D

−
Λ = Λ and their Gram matrices are related by 

( ) 1D −=G G .  

Obviously, the dual of the dual lattice is the primal lattice 
itself. The geometry of the dual lattice is closely related to the 
geometry of the primal lattice. The connection is that each 
point in the n-dimensional dual lattice defines a family of 
parallel (n−1) dimensional hyperplanes onto which translates 
of a (n−1)-dimensional sublattice lie. The union of those 
planes captures all the points of the primal lattice. This means 
that the shortest vector in the dual lattice will define the most 
distant (n−1)-dimensional hyperplanes, whose union builds up 
the whole primal lattice. These hyperplanes can be interpreted 
as parallel layers and (as a consequence of being the ones 
furthest apart) are the densest ones in the lattice. In MIMO 
literature, the geometrical interpretation of the dual lattice as a 
tool for improving detection seems to have been first noticed 
in [22] (p. 2207) for sphere decoding, and then in [23] and 
[24], though it is also implied in the detector in [25] (p. 1944). 

From definition (13), in both Λ and ( )DΛ , the inner product 
between some given point z  in the dual lattice and any vector 
in the primal lattice is always an integer, and therefore, 

 
( ), , ,

cos( ) Proj ( ) ,
z

D

θ

∈ ∈ Λ ∈ Λ ⇔

⇔ = ∈
e

z x z x

z x z x

ℤ

ℤ
 (18) 

where /=z z z . It is then possible to define a family of 

parallel hyperplanes ( )νP , for ν ∈ ℤ , such that Proj ( )=
z
x

1
ν

−
z . These are planes in dimension 1n − , with a distance  

1
d

−
= z  between them, as illustrated in Fig. 1. Remark: all 

vectors 
i
a  in a given hyperplane have the same inner product 

with z . 

 
Fig. 1: A primal lattice in n dimensions as the union of translates of a 
sublattice and these translates lie on ( 1)n − -dimensional hyperplanes.  

IV. GEOMETRIC INTERPRETATION OF MIMO RECEIVERS 

This section starts by introducing the most important type 
of MIMO receivers and the geometric concepts associated 
with them, which explain their performance loss in respect to 
the optimum detector. The linear receivers, which are the 
simplest ones, but also the ones having the worst SER, are the 

2
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3
a

( )D∈ Λz

1
d =

z

��
��
��
��
�

cos( )

1
, ( 1)

k k

k

θ

ν= ∀ ∈ =

a

a
z

P

2
θ 3
θ

3
ν =

0
ν =

1
ν =

1

ν =
−

2
ν =

1
a

1
θ
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first ones to be geometrically interpreted. Then, the ordered 
successive interference cancelation (OSIC) technique is 
described, followed by the lattice-reduction-aided (LRA) 
approach, and then the sphere-decoding concept is introduced. 

A. Linear receivers: ZF and MMSE 

Linear receivers consists of i) a linear transformation W  of 
the received vector which then followed by ii) a quantisation 
to the symbol alphabet (also known as slicing). The linear 
transformation is a filter that can be designed with two 
different criteria, leading to the zero-forcing (ZF) detector or 
to the minimum mean square error (MMSE) detector. These 
receivers constitute the simplest set of (non optimal) receivers 
to be widely used for MIMO receivers. The detected solution 
x  given by these techniques is obtained by applying 

 
W

=x Wy , (19)
 

 Ŵ W
Q  =   x x
ℤ

, (20) 

where [ ]Q ⋅
ℤ

 denotes rounding to the nearest integer and the 

subscript W in 
Ŵ
x  indicates the filter design criterion: ZF or 

MMSE. Both linear receivers offer solutions to (9) that 
involve the inversion of H , which implies a number of 

operations O(n3) [26] (p. 170). Note that the number of 

operations is taken as a standard metric to compare the 
computational complexity of the different detection techniques. 

1)  Zero-forcing receiver 

It is natural to think first of a solution to (19)  involving the 
linear transformation that undoes the linear transformation, 
which is obviously the inverse matrix, i.e., that takes the 
structure on the right side of Fig. 1 and reverts it to the original 
cubic structure on the left side of Fig. 1. In both types of linear 
receivers the linear transformation W  can be seen as a 
focusing process of the points in the received lattice back onto 
nℤ (or nℂ ). This “backwards transformation” is of interest 

because it maps the received lattice back onto nℤ , which 
lends itself to simple orthogonal slicing. Besides this reason, 
there is no other motivation for this particular design. In 
Section VI the concept of a having a linear transformation as 
the first stage of a detection technique will be generalised to 
the concept of focusing a received lattice onto some other 
given lattice, whose geometric structure is also of interest 

(although it will no longer be the cubic nℤ ). 

The Moore-Penrose inverse of H , when 
R T

N N≥ , 

always exists and is defined as 1( )H H+ −=H H H H . If 

R T
N N= , and for full rank channel matrices, this inversion 

amounts to a simple matrix inversion 1−=W H , which leans 
itself to a simple geometrical interpretation. 

 

 
ˆ ( ) .
ZF ZF ZF

Q Q   = + = +      x W Hx n x W n
A A   

(21)
 

The filtered noise is transformed by 
ZF

W += H , which 

constitutes a noise enhancement factor. The receiver structure 
is shown in Fig. 3. 

 

 
Fig. 3: Zero-forcing receiver. 

The detected vector ˆ
ZF
x , as obtained from (21), is in fact 

the solution to 

 { }ˆ argmin
N
T

ZF
∈

= −
x

x y Hx
ℝ

. (22) 

As is mentioned in the previous section, ZF solves the CVP 
by relaxing it to a search in a continuous neighbourhood 
instead of computing the distance between the received vector 
(also called the target) and every point in the lattice. The 
geometrical implication can be better understood thinking of 
the linear transformation of the hypercubic Voronoi regions of 
nℤ byH . The resulting regions are called the ZF decision 

regions and correspond to the space where a lattice point will 
be interpreted as being close to the lattice point associated 
with that region.  

The decision regions associated with ZF criterion are 
simple to obtain as they are the fundamental region ( )HR , as 

defined in (10). Because the lattices in MIMO are Gaussian, 
the basis generated by a channel may have some highly 
correlated vectors. Geometrically, this corresponds to lattices 
with very narrow fundamental regions, which are generated by 
ill-conditioned matrices, i.e., when one or more singular 
values are close to zero, and consequently the volume of the 
lattice vanishes. Fig. 4 shows the ZF decision regions 
associated with two equivalent bases (the relation between the 
two bases will be shown below in Section IV-A-4). 

Let us concentrate in the case where the transmit point was 
the origin. The shaded areas indicate regions which will lead 
to wrong decisions when using the ZF technique: either 
because the point is inside the Voronoi region and outside the 
ZF decision region or because the closest lattice point would 
be decided as being the origin while the Voronoi region shows 
that to be false. It is possible to observe in Fig. 4 that different 
bases will output different decisions given a target point. For 

the examples at a given SNR, the SER with 1
H

 
will be always 

lower, because the coverage of the MLD (i.e., Voronoi) 

regions is larger in the case of basis 2
H  (in the sense that the 

decision region intersects the Voronoi region in a larger 
volume). The notion of coverage is essential to understand 
MIMO detection [27]. In order to simplify the operational 
meaning of coverage, Ling [28] introduced the notion of 
proximity factors dependent on the notion of the largest sphere 
that can be fitted inside the region of coverage. These spheres 
are also shown in Fig. 4  for the two basis, having decoding 

radii  1
ξ  and 2

ξ respectively. 

x̂y
ZF
W H+=



 
 

 

 
 

Fig. 4: Decision regions associated with the two different bases of the same 
lattice. 

 
A receiver with a better performance is the one whose 

decision regions better approximate the shape of the regions 
associated with MLD. The receiver to be presented in Section 
VI aims at to maximise this matching between its decision 
regions and the ones of MLD. 

2)  Minimum Mean Squared Error Detection 

The other (and more sophisticated) linear receiver aims at 
finding the filter that minimises the mean squared error 
between the estimated vector and the original vector, i.e., the 
filter should be   

 { }2argmin
MMSE

E= −
W

W Wy x . (23) 

This criterion does not aim at cancelling all the interference 
between layers as ZF does. Instead, the MMSE criterion takes 
into consideration both the interference and the noise in order 

to minimise the expected error. This minimization implies 
finding the point where the gradient of the objective function 
in (23) is zero. There is however a fast track to finding this 
estimator by applying the orthogonality principle, well known 
in estimation theory and widely used in equalisation problems 
in the ISI channel [29] (secs. 2.2.3, 2.3.4), [30] (sec. 5.2), [31] 
(sec. 5.6). The optimum estimator for (23) is the one that 

produces an error vector 
MMSE

∆= −W y x  that is orthogonal 

to received signal, i.e., the two vectors are uncorrelated (as 
illustrated in Fig. 5). 

  
Fig. 5: Orthogonality principle: the expected error is made orthogonal between 
the receive vector and the space where the best solution is searched. 

 
The MMSE receiver is implemented with the block diagram 

(and the filter 
MMSE
W ) specified in Fig. 6. 

 

 
Fig. 6: MMSE receiver. 

The minimum norm ∆  occurs when
MMSE

⊥∆W y , i.e., 

 { }( ) 0H

MMSE
E − =W y x y . (24) 

B. Ordered Successive Interference Cancellation 

This detection algorithm first proposed in  [32], uses the 
principles of SIC, already known in ISI control and MUD and 
is also known as the V-BLAST detector. The general principle 
of SIC is that an initial “best” layer is detected and then, 
assuming that the symbol was correctly detected, the 
interference caused by that symbol is replicated and subtracted 
from all the other layers. The procedure is then applied to the 
“next best” layer: one symbol more is detected, its interference 
recreated and then subtracted from the remaining ones. 

One important question that arises is the one of determining 

the order of detection of the 
R
N  antennas. For a MIMO n n×  

system one has to find the optimum permutation ( )kΠ  of the 

column indexes { }1,2, ,n⋯  that minimises the SER amid all 

the !n  possible permutations. An exhaustive search over all 
the permutations would rapidly become unbearable as n  
increases. The optimal solution to this problem was found 
early on in [33], [32], in the first implementations of the V-
BLAST detector. The optimal criterion at each stage is to 
select the layer that less emphasises the noise power after a ZF 
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or a MMSE filter. From these facts it is now possible to devise 
a geometric proof to the optimal ordering of the layers in 
OSIC and connect it with the geometric ideas of the Babai’s 
nearest plane algorithm [34], [17] (ch.2) in algorithmic 
number theory, which actually corresponds to SIC in MIMO, 
as first noticed by[22], [35]. 

In order to minimise the error probability when deciding 

layer j,  the generator vector 
j
h  to be selected at any given 

decision step k, with { }1,2, ,k n∈ ⋯ , should be the vector that 

maximises the projection onto the orthogonal space to the 
space spanned by the matrix that remains after that same 
vector is taken out from H . 

The initial step is to find the column vector 1
h  that, when 

removed from H , transforms H  into 1
H  (as 1

H  denotes the 

matrix that is obtained from  after removing column j). 1
H  

is the generator of an ( 1)n − -dimensional lattice 1n−
Λ . 

Hence, the original lattice can be written in the form 

  
1 1n

i
−

Λ = Λ + h , i ∈ ℤ , (25) 

signifying that  can be created from the union of translates 

of the 1n−
Λ sublattice. 

The diversity attained by SIC is 1
R T

N N− +  and sorting 

the layers does not contribute to any improvement in this 
respect, as recently proven in [36]. Sorting can only yield a 
power gain in SM detection. 

The decision regions associated to SIC are hyper-
rectangular and it is not difficult to perceive (e.g., from Fig. 7, 
but particularly in Fig. 8) that these decision regions are 
unequivocally defined by the Gram-Schmidt vectors of the 
basis of the lattice (e.g.,[28]). 

Once a decision is produced for one layer, the subsequent 
step is to repeat the process, now in the sublattice with basis 

j
H , i.e., by removing generator 

j
h  from the set. The process 

repeats itself until a decision is made in a one-dimensional 
lattice, corresponding to the decision of the last layer to be 
detected. 

Fig. 7 depicts SIC applied to a lattice partitioned as in (25). 
In a first stage the nearest hyperplane is found and a decision 

for the layer associated to  is produced. In a second stage, 

depicted at the bottom of Fig. 7, the same procedure is applied 

but now conducted in the sublattice 1n−
Λ . 

 
3 1

1 3

 
 =  
  

H . 

 

 
 

Fig. 7: The nearest plane algorithm with sorting. Choosing the jth generator 
vector that maximises the distance between parallel hyperplanes. The lattice is 
the union of such translates. 

 
 
 

 
Fig. 8: Errors events in SIC. Plane 1 is selected because it is the closest plane, 
however, the closest lattice point lies in plane 2. The SIC decision region for 
the origin is shown.  
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Fig. 8 shows the SIC decision region for the origin of the 
lattice with basis. The example shows a target point located in 
a region where SIC outputs an erroneous decision. The first 
SIC step in the example in Fig. 8 selects the plane which is the 
nearest one to the target point. In the example, SIC would 
decide for plane 1 while the Voronoi region indicates that the 
correct point lies in plane 2. 

The fastest implementation of the original OSIC idea was 
provided in [37] and was made cubic in n , i.e., with 

complexity O(n3), nevertheless other O(n3) algorithms were 

known for OSIC much before (c.f. [38] (p.39) and references 
therein). Ling et al. also proposed an OSIC algorithm with 

O(n3) complexity based on the geometric insights offered by 

the dual lattice [21]. In doing that, the same optimal ordering 
known for OSIC [32] is proven and the same performance is 
attained without needing a matrix inversion for each layer to 
be detected. This approach makes use of the shortest vector in 
the dual basis at each detection step. 

One can now formalise SIC in a very concise manner; the 
k

th index for the permutation is then selected from 

 Proj( ) argmax , ( )
k

j
j

T

j
j

k ⊥
∈

   Π =  
   

H
h h

A

. (26) 

where 
k
A  is the set of columns that have not been chosen yet.  

Consider now a linear space spanned by the columns of H , 
i.e., span( )H . The projection of a vector a  onto that space is 

denoted as Proj ( )
H
a , the projection onto the space orthogonal 

to span( )H  is denoted as Proj ( )⊥H
a , and they are given by 

[26] (sec. 8.3) 

 Proj ( ) ,+= =
H H
a P a HH a  (27) 

 Proj ( ) ( ) .⊥ ⊥

+= = −
H H
a P a I HH a  (28) 

From (27) and (28), the projection onto the span( )
j
H  is 

 
j

j j

+=
H
P H H  (29) 

and the projection onto its orthogonal complement is 

 

( )
1

j
j j

H H

j j j j

⊥

+

−

= −

= −

H
P I H H

I H H H H
 (30) 

where the Moore-Penrose pseudo-inverse was used on the last 
line. 

Using these assisting matrices (29) and (30), one can write 
the layer ordering problem in the following maner: 

  ( ){ }1
, , , ,

( ) argmax ( )
k

T T T T

j k j k j k j k j j
j

k h h−

∈

Π = −I H H H H
A

, (31) 

which is a very concise expression that summarises the entire 
OSIC with optimal ordering [39]. Starting with 

{ }1
1,2, ,A n= ⋯  (i.e., with all the columns of H ), the set  

is reduced by one element each time a column is selected, and 
continues until only one is left. Although concise, this 
formulation for finding the permutation ( )kΠ  does not lead to 

a practical implementation. 
There is however a very elegant way of finding ( )kΠ  

remembering that the distance between hyperplanes in the 
primal lattice is established by the lattice points in the dual (as 
proved in Section III-B). Selecting the smallest basis vector in 
the dual basis ensures that the decision for that layer will be 
made from selecting between the most distant hyperplanes 
associated to that basis. Nonetheless, it is important to 
highlight that these are not necessarily the most distant 
hyperplanes in the lattice, because the search depends on the 
basis that was given in the first place. This observation 
confirms why there is room for improving a receiver based on 
the OSIC principle and why lattice-reduction-based receivers 
can improve this performance. It is thus natural to look for 
short vectors in the dual lattice other than the generators 
constituting the basis. Shorter vectors in the dual lattice would 
maximise the distance between the parallel hyperplanes and 
thus minimise erroneous decisions. Finding shorter vectors in 
the dual lattice is accomplished by means of lattice-reduction-
aided (LRA) techniques, which will be presented next. 

It is noteworthy that the geometric interpretation presented 
in this section also sheds light onto the finding by Taherzadeh 
et al.  that reducing the dual matrix is preferable to reducing 
the primal basis [40]. 

C. Lattice-Reduction-Aided Detection 

As mentioned in Section III-A, two different bases can 
generate the same lattice although their fundamental regions 
have different coverage. In order to maximise the coverage of 
the MLD region, one is interested in bases with vectors that 
are both short and close to orthogonal, which is called a 
reduced basis.Lattice reduction provides an equivalent basis 
with shorter (and more orthogonal) generator vectors. Fig. 9 
depicts a lattice with a rather “skewed” basis and a reduced 
basis. 

 
Fig. 9:  A reduced basis (shorter) and a skewed basis (larger) for the same 
lattice. 

 
Two bases of a lattice are related by a unimodular 

transformation M (a matrix only with integer elements and 
with det( ) 1=M ). In particular, the two basis in Fig. 4 of 

Section IV-A-1) are related by 

 
1 2

6 2 6 8 1 1

1 5 1 6 0 1

     
     = ⇔ =     
          

H H M , (32) 

k
A



 
 

And, in this case, it is easy to see that det( ) 1=M . 

When a ZF filter is used, the coverage of the Voronoi 
region can maximized if the basis is more orthogonal and with 
short vectors. For example, the basis in Fig. 4-a) was 
preferable to the one in Fig. 4-b). To make this possible, in 
lattice-reduction-aided (LRA) receivers a pre-processing stage 
is introduced before the detection algorithm, as shown in Fig. 
10. 

 

 
Fig. 10: MIMO detection with lattice-reduction pre-processing. 

 
The application of lattice-reduction-aided (LRA) techniques 

to MIMO detection was pioneered by Yao and Wornell in 
2002 [41], and since then the research in LRA applications to 
different MIMO contexts (such as the broadcast channel, 
important in LTE) has boomed. These authors applied the 
Lenstra Lenstra Lovász reduction (LLL, also sometimes 
denoted as L3) [42] to reduce the channel matrix. An overview 
of the applications of lattice reduction techniques in MIMO 
(including SM and BC) exists in [43]. LRA detection achieves 
the maximum diversity available in SM, as proved by 
Taherzadeh et al. [40] for the case of LLL. 

The idea is that the system model can be re-written as 

 		
1

red

red

−= + ⇔ + ⇔ +
H z

y Hx n HMM x n H z n  (33) 

In this model,  is a modified data vector that can be 
detected with a lower SER than would without LR. This is 
true regardless the type of receiver that follows the LR pre-
processing (usually ZF, MMSE or OSIC). The original data 
vector can then be recovered from  noting that 

 1−= ⇒ =z M x x Mz  (34) 

Because M-QAM constellations and their PAM equivalent 
alphabets are defined without the origin and have non unitary 
distance between the symbols (c.f. (2)), in order to apply the 
lattice tools as in (33)-(34), it is necessary to make a 
translation of the constellation, creating the modified received 
vector 

 ( ) ( )
1 1

2 2
= + ⋅ = + + ⋅

red
y y H 1 Hx n H 1 , (35) 

where  is the column vector of elements all equal to 1. 
Now, in the case of a ZF criterion, 

 
red

+=
red

z H y , (36) 

and in performing  

 
	

ˆ 2 ( )

ˆ

Q= −x M z 1

z
ℤ

, (37) 

the symbol ẑ  is detected and put back in the alphabet A . 

D. Sphere decoding 

Sphere decoding (SD) is an exact detection method (i.e., it 
achieves the same performance as MLD) with a complexity 
that, on average, is much lower than MLD. The idea is that a 
rigid rotation Q  can be applied to the ensemble{ , }Λ y  , for 

which the CVP needs to be solved, so that the lattice can be 
described by an equivalent lattice in u.t form. The u.t. property 
allows describing the norm of any lattice point to be detected 
as a sum that can be computed incrementally, taking in 
consideration the cumulative effect of each vector components. 
Consider now that an upper bound (UB) on the norms is 
established. The u.t. property of the basis allows all the 
possible values in the last component of the data vector, ( )x n , 

to be detected. As the norm can be computed as a sum of 
“ordered” contributions, if some of the tested values in ( )x n  

generates a total vector norm that is larger than the UB, then 
those values of ( )x n  need not to be considered further as 

possible values in the solution. This procedure can extended to 
the next layer 1n − , where only the possible values of ( )x n  

are considered. In conclusion, finding vectors with norm 
smaller then the UB is a problem that can be solved by 
expanding and pruning a tree that represents the lattice points. 
All these ideas can be converted to the CVP, if the lattice is 
shifted to the target y . 

 

 
Fig. 11: Sphere decoder receiver structure. 

A sphere decoder has the structure shown in Fig. 11. After 
traversing the tree with a particular symbol enumeration, the 
MLD solution is always found if the initial radius that is 
chosen is large enough to contain a lattice point inside the 
hypersphere. Fig. 12 gives an example tree associated with 

 antenna and 4-PAM, showing the branches that have 
been expanded at each tree level. 

 

 
 
Fig. 12: Tree exploration of a tree with 3 layers, considering a 4-PAM 
alphabet. 

As mentioned above, one can define an UB for the radius 
(or, equivalently, for the squared radius) of the sphere around 

the received point, i.e.,
2 2ξ− ≤y Hx . Finally, remembering 
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that R  is upper triangular, for full rank H the  problem can be 
written as the sum 

 

2

2

1

( )
m m

i ij
i j i

y r x j ξ
= =

   − ≤   
∑ ∑ , (38) 

which is in the form of incremental contributions, thus 
allowing to be solved by a tree exploration as exemplified in 
Fig. 12. 

The average complexity of SD is exponential, given by 

( )T
N

M
α

O  with  [44], however, for low 

dimensional lattices, that number is affordable. 

V.  A GEOMETRY-BASED RECEIVER 

This section capitalises on the geometric relation between 
primal and dual lattices and proposes a dual-lattice-aided 
(DLA), for slow fading channels, that samples some points 
nearby the received vector and generates a list of candidate 
solutions to the CVP. This sampling makes use of projections 
onto distinct families of parallel hyperplanes where the density 
of lattice points is maximised. 

A. Successive Minima in the Dual Lattice 

The dual lattice, as is the case of any lattice, has a shortest 
vector (which comes at least paired with its symmetrical 
vector) and a set of other successive minima. Because some of 
these vectors may be linearly dependent, the interesting 
definition of successive minima imposes independence. Hence, 
λi

 
is the ith successive minimum of a lattice if λi is the smallest 

real number that is the smallest radius of a sphere that contains 
i independent vectors, all with norms smaller or equal to λi. 
The shortest vector obviously has norm λ1. 

From Section III-B it is possible to conclude that the 
hyperplanes which are furthest apart from each other (and thus 
having the highest density of lattice points on them) are 
defined by the shortest vector in the dual lattice. This 
observation is essential to explain which layer must be 
detected first in a OSIC receiver. The selection of the next 
layer is determined by the same observation, applied now to 
the sublattice spanned by the matrix obtained after striking out 
from H  the column generator preciously detected. 

In what follows, this paper proposes that not only the family 
of hyperplanes that are furthest apart are used, but also that 
other families of hyperplanes associated with some of the 
successive minima of the dual lattice should also be brought to 
use. Fig. 13 (a) and (b) shows an example of two of those 
different partitions of a lattice defined by 

3 7 2 7

1 7 3 7

 − =  −  

H    and with  ( ) 3 1

2 3
D

 
 =  
  

H , 

associated with two different choices of vectors in ( )DΛ .  
Consider the hyperplanes selected by the first L successive 

minima in ( )DΛ , i.e., λi,⋅⋅⋅ λL. Finding the shortest vector in a 
lattice is itself a NP-hard problem, which implies the same 
complexity for obtaining the L shortest ones. Nevertheless, if 
this is only required at a pre-processing stage, and not needed 

for each received vector, then using a sphere decoder is 
acceptable. 

 
(a) Hyperplanes in the primal lattice associated with (–2,1) in the dual lattice. 

 
(b) Hyperplanes in the primal lattice associated with (–1,4) in the dual lattice. 

 
(c) Vectors selected in the dual lattice (black arrows). 

 
Fig. 13:  Identification of the hyperplanes in the primal lattice associated with 
a given vector in the dual lattice. 
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While its complexity is exponential in the dimension of the 
lattice [45], this cost is only necessary whenever the channel 
changes, which is tolerable for slow fading channels.  

Using the SD principle, applied to the origin of the lattice, it 
is possible to list all the points of a lattice inside a hypersphere 
of radius ρ centred in the origin, which for this reason only 

requires a very simple implementation of the SD such as the 
one given in [45]. We are interested in the set of lattice points 

spanned by m n×∈H R  which verify  

 { }2 2: ,ξ∈ = ⋅ ≤ ∈y y H x xR Z . (39) 

which can be written in the form (38), permitting the 
characteristic tree exploration of SD. Because one is interested 
in planes with different distances, not all the lattice points with 

ξ<y are a successive minima and they need to be 

expunged from the list. 

When centred at the origin, an implementation of SD such 
as that in [45], outputs a list of (column) vectors arranged as 

 

1 2 /2 1 1 /2 1

/2 1 /2 1

[ , , , , , ]
N N N

N N

− +

− −

s s s 0 s s⋯ ⋯
��������������� �������������

 where 0 is the origin, which is always captured in the set for 
any ρ >0 and N is the number of lattice points inside the 
sphere of radius ξ . 

The two sides of the output around 0 have the same vectors 

up to their sign and therefore the selection of the first N/2−1 

suffices. In addition to that selection, one will just take one 
vector for each distinctive norm, even if there are several 
linearly independent ones. This widens the range of different 
distances between hyperplanes. The resulting set of vectors in 
the dual will be dubbed unique successive minima (USM). 
This concept is depicted in Fig. 13 (c), where L=7 USM are 

found inside the sphere in ( )DΛ . 

B. Projections onto Hyperplanes 

The L USM in the dual lattice are denoted by 
( ) ( ) ( )
1 2

, , ,D D D

L
v v v⋯ . Naturally, the unit vectors which are 

orthogonal to the families of hyperplanes are   

 
( ) ( ) ( )D D D

i i i
=v v v  (40) 

and we further define the vectors
1 2
, , ,

L
v v v⋯  , each one 

respectively collinear with 
( )D
i
v , but forced to have norm d=

1
( )D
i

−

v , as has been suggested in Fig. 1. Hence, from (40), 

these vectors should be 
2

( ) ( )D D

i i i
=v v v .  

The projections of the received vector (i.e., the target in the 

CVP) onto a family of ( )
i
ν

v
P  hyperplanes generate the set of 

projection points 

( )

2 2

, ,
( , )

( , )

i i

p i i i

i i

i i

Qν ν

ν

Ω

      = + − +        

= + Ω +

y v y v
y v y v v

v v

y y v v

ℤ

���������������������
. (41) 

where ν ∈ ℤ  and ( )Q ⋅
ℤ

denotes rounding to Z. Notice that, in 

the case of a zero noise vector, the index Ω will be always an 
integer, indicating in which hyperplane the lattice lies, for 

each family 
iv
P . 

C. List of Candidate Solutions 

Fixing L as the number of USM, and setting νmax as the 
maximum value of ν  that will be explored, it is possible to 
obtain a set C consisting of the candidate vectors obtained 
from  

 ( )( )
max

( , ) , 1,2, ,2 ,C

i p i
Q i Lν ν+= =y H H y v ⋯
A

 (42) 

The total number of candidates considered in (44) is given 
by the number of families of hyperplanes considered (i.e., the 
number of USM inside a sphere) multiplied by the number 
parallel of hyperplanes considered (the closest one and the 
adjacent ones with non-zero index ν ): 

 
max

| | (2 1)C L ν= ⋅ ⋅ + . (43) 

 This amounts to performing zero-forcing detection not only 

to y but also to the set of all projections onto ( )
i
ν

v
P . 

This concept is depicted in Fig. 14, which shows the 
projections of the target point onto the three densest families 
of hyperplanes with lattice points. The projections are made 
through the dark black segments and, for this example with 

1, 0, 1ν = − + , there are three projections along each black 
segment onto the corresponding three nearest hyperplanes.  

 
Fig. 14:   Dual-lattice-aided generation of candidate solutions considering 

νmax=1 and considering L=3 families of hyperplanes: the two families in Fig. 

13 and also the family associated with the dual vector ( )
2
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The circle lines in Fig. 14 correspond to the nine projections 
that are generated, i.e., three projections in each family of 
hyperplanes. 

The solution to the CVP is then obtained by applying the 
maximum likelihood principle to all the vectors in the set of 
candidates C 

 
( )

2
( )ˆ argmin

C
i

C

i

C∈

   = − 
   y

y y y . (44) 

Table 1 shows the number of candidates, | |C , generated 

when the number of USM is set to 4L n=  and the maximum 

index of the hyperplanes is 
max

2ν =  and 
max

4ν = . 

 
Table 1: Number of candidates in DLA. 

 

 4n =  6n =  8n =  12n =  

max
4 , 2L n ν= =  80 120 160 240 

max
4 , 4L n ν= =  144 216 288 432 

 

D.  Simulation Results 

The performance of the proposed dual-lattice-aided (DLA) 
receiver is assessed in terms of the (complex) symbol error 
rate (SER) with L=4n, for 3×3 and 4×4 antennas (i.e., lattices 
with n=6 and n=8 dimensions, i.e., with L=24 and L=32 
respectively) using 64-QAM.

 
The results are shown in Fig. 15 

and Fig. 16. These figures also include the following 
traditional receivers: ZF, MMSE, OSIC, LRA using LLL pre-
processing with ZF and also with OSIC-ZF, besides ML 
(using SD). In both cases OSIC is outperformed.  

One can observe that DLA detection outperforms OSIC 
using a reasonable number of candidates, | |C , obtained from 

the projections (41) and listed in Table 1. At 3SER 10−= , the 
gain in respect to OSIC amounts to 5 dB with 3×3 antennas, 
and is 4dB with 4×4 antennas. 

The DLA receiver exhibits better performance than LRA in 
the low SNR regime, but because LRA achieves the full 
diversity of the channel [46] the SER of LRA eventually drops 
below the one of the proposed algorithm. It has also been 
found that, as expected, when either L or νmax decreases, the 
performance degrades.  

The complexity involved in DLA is concentrated in the pre-
processing stage that is only required each time the CSI is 
updated at the receiver. This involves solving a SVP via SD, 

which has complexity , as mentioned in Section 

IV-D. However, once the USM are determined, DLA 
detection amounts to first computing the projections according 
to (41), and perform afterwards the matrix multiplications in 
(42), involving the Moore-Penrose inverse of the channel. 
Therefore, given that matrix multiplications have a number of 

operations O(n3) (which is the same as the complexity to 

compute the pseudo-inverse), the total number of operations is 

then bound by 3
max

2 ( )L nν O , with 2
T

n N= , because there 

are max
2Lν  candidates in (42) . 

 

 
Fig. 15:   SER vs SNR for 3×3 antennas and 64-QAM. 

 

 
Fig. 16:   SER vs SNR for 4×4 antennas and 64-QAM. 

 

VI. TRELLIS-BASED RECEIVERS 

This section presents a novel concept for SM receivers 
which by converting the problem into the search of a 
minimum cost path in a trellis, which can be solved by the 
Viterbi algorithm (a well known technique to radio 
communication engineers). 

A. Trellis representation of lattices 

The regularity of a lattice lends itself for the representation 
of problems where signals are interpreted as a point in a 
multidimensional space defined in some basis. Forney’s 
pioneering work [47] showed that some lattices can be 
described by a trellis, where each segment of the trellis is 
associated with the coordinates of the lattice points in each 
dimension of the space. The lattices for which a trellis exists, 

can be said to constitute a family of lattices, denoted by LR. 

These properties have been used in coding theory for detecting 
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lattice codes [48]. However, this approach requires a rather 
restricted type of lattice allowing a trellis representation. Some 

well known lattices belong to LR (such as A2, D4, E8, or the 

Leech lattice in R24) [49] but others are constructed imposing a 

specific geometrical structure during the design of the code. 
MLD can in those cases be attained through trellis detection, 
and therefore the CVP is in those cases solved with the Viterbi 
algorithm. This circumvents the exponential complexity of 
MLD. 

Clearly, the trellis detection approach cannot be extended to 
any random lattice. However, one should ask the question, for 
any given lattice, can one find a lattice that is sufficiently 
“similar” or “close” to it, and yet is simultaneously a member 
of the family of lattices with a trellis representation, LR. This 
paper deals with that question. As lattices are defined by 
generator matrices, the problem can be seen as a matrix 

nearness problem [50]; as in many other matrix nearness 
problems, the one we formulate also does not seem to have an 
analytical solution and therefore we take an algorithmic 
approach. To the best of our knowledge the approximation of 
a random lattice by a lattice in LR is a new approach to MIMO 
detection. In [51] the authors use a trellis detector but their 
approach is clearly sub-optimal, as it is based on a 
transformation of a tree data structure (associated with a 
sphere decoder) into a trellis data structure, and ends up losing 
many of the branches. 

In this section one derives the property that makes a lattice 
a member of LR and presents an algorithm to find such a 
lattice which is “nearby” a given random lattice. Then the 
paper presents results for typical detection in MIMO SM, 
comparing the results with the most important sub-optimal 
receivers and MLD. 

B. Focusing Onto the LR Family 

We call M the set of all possible lattices in nℝ . Hence, 
n
Z  is just one particular lattice in M (see Fig. 18). Moreover, 
all lattices with a trellis representation are also members of 
that M  and we say that they constitute the LR family of 
lattices. 

It is well known that the simplest way of solving the CVP 
amounts to the least-squares solution given by the Moore-
Penrose pseudo-inverse of the generator matrix. In the MIMO 
context this is known as the zero-forcing (ZF) solution. 
Geometrically, this type of linear receiver applies a linear 
transformation that takes the received lattice Λ  and transforms 
it back into the original n

Z . We will call this procedure a 
focusing of the received lattice Λ  onto n

Z , and we propose to 
generalize this concept of focusing by means of a linear 
transformation F. The ZF focusing approach presents the 
lowest complexity among all sub-optimal receivers but also 
results in the poorest performance (in terms of erroneous 
decisions). The poor performance is a direct consequence of 
the potentially huge mismatch between the optimal decision 
regions in MLD and the decision regions associated with 

focusing onto .nZ These decision regions are nothing but 
linear transformations of n-dimensional hypercubes. Note that 
the convenience of the ZF receiver comes from the fact that 
the destination lattice is n

Z , which allows detection by means 
of a simple slicer. 

One argues that it is possible to perform a linear 
transformation from any received lattice Λ  onto other lattices 
in M which also lend themselves to another convenient 
detection method, namely, the Viterbi algorithm. This concept 
gives rise to a new kind of MIMO receiver with the steps 
illustrated in Fig. 17. 

 
Fig. 17: Detection on an approximated trellis representation. 

 
 Fig. 18  depicts the set of all lattices, including the 

particular LR family. Any given lattice may be closer to one 
lattice in LR than to n

Z , as those are infinitely many more. 
Again, notice that ZF would focus any received lattice always 
onto  n

Z , regardless the distance to it. 

 
Fig. 18:   The set of lattices and the focusing operator. A received lattice Λ  

can be focused onto the nearest member of LR or onto nℤ . 

 
When the distance between lattices is reduced, then the 

matching (or coverage) between their decision regions is 
maximized, which minimizes the distortion created by linearly 
transforming one lattice onto another one. If there is a member 
of LR nearby Λ  (i.e. very “similar” to  Λ ), then i) its MLD 
regions will mach closely the ones of the original lattice and ii) 
the distortion involved in the focusing  operation will be small. 

C. The LR Family of Lattices 

A lattice has a trellis if it can be written as the union of a 

rectangular sublattice 
R

Λ  and translated versions of it. As 

noticed by Forney  [47], such a lattice is given by Λ =ΛR + 
[Λ/ΛR], where [Λ/ΛR] is a “system of coset representatives” for 
the cosets of ΛR in Λ or, equivalently, for the elements of the 
quotient group  Λ/ΛR. As ΛR is a rectangular lattice, by 
definition it can be expressed by a Cartesian product, i.e., 

1R n
r rΛ = × ×ℤ ⋯ ℤ . 

Fig. 19 shows an example of a lattice in 2
Z  and its 

representation by a trellis. It is possible to observe the 
rectangular quotient group and its translated versions.The 
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lattice is then the union of the cosets of ΛR in Λ . For the case 
in Fig. 19 , the index of ΛR in Λ is |C|=|Λ/ΛR |=5. In general, 

 
det( )

det( )
RC

Λ
=

Λ
. (45) 

 
 (a) Rectangular sub-lattice in a lattice that has a trellis representation. 

 

 
 

(b) Trellis of the 2D lattice. 

Fig. 19: A rectangular sub-lattice in a random lattice and the trellis 
representation of the lattice. 

 
Using the origin as a representative of ΛR, the set 

constituted by the origin together with all the other points with 
coordinates (c1i, c2i), i=1,2....|C|, that are inside the central 
rectangular region are the coset representatives of the quotient 
group. The whole lattice can now be seen as a tiling of the 
space using that fundamental region. The coefficients 

1 2
, ,

n
r r r⋯  have now a simple geometrical interpretation as 

they define the lengths of the fundamental hyper-rectangle. 
There is a strong connection between the way the trellis of 

binary block codes and group codes are obtained from a 
trellis-oriented generator matrix [48], [52] , and how the trellis 

of a lattice is obtained from the basis of a lattice in 
R
L , [47], 

[53]. The n-dimensional orthogonal sublattice has its basis 
vectors along one-dimensional subspaces Wi, i=1,...,n.  From 
these we can define the sequence of spaces {0} ⊂ V0 ⊂V1 ⊂ ⋅⋅⋅ 

⊂ Vn=
n
R and each Wi, is the 1-D orthogonal complement of 

Vi−1 to Vi. We denote the projections onto Vi and Wi 

respectively by Pi and the 
i

W
P  and define the intersection 

lattices 
i i

VΛ = Λ∩  and the one-dimensional lattices 

i
W i

WΛ = Λ∩ . 

Using these definitions, the state space of a trellis of a 

lattice in the coordinate system 
1

{ }n
i i

W
=

 is 1
( )/
i
P Λ Λ  and the 

label group for the trellis branches is ( )/
i i

W W
P Λ Λ  [54], [55] 

[56].  

D. Orthogonal Sublattices 

We are interested in finding what properties a generator 

matrix must have so that it generates a lattice Λ ∈LR . 

1)  Properties of the generator matrix 

A lattice can only be written as in the form Λ =ΛR + [Λ/ΛR] 
if and only if it contains a rectangular sublattice. Given a 
lattice, to find if a rectangular sublattice in it is believed to be 
itself an NP-hard problem. Micciancio calls it the quasi 
orthogonal set problem [17] that we may appropriately call it 
the quasi orthogonal sublattice problem (QOSP). This 
problem deserved virtually no attention in the literature, 
apparently due to lack of applications. 

In addition to the problem of discovering a rectangular 
sublattice we add an additional constraint: we want to find the 
rectangular sublattice that minimizes the index number of the 
quotient group in order to minimize the number of trellis paths. 
The problem does not seem to have an analytical solution; 
consequently, we revert to an algorithmic approach. 

Let us consider a random rational lattice defined by a 
rational H  with entries hij=nij /dij and whose inverse is the 

rational matrix W=H−1 with entries pij /qij. For lattice points, 

because 1−=x H y  (no noise), one should force 
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for k ∈ Z . As ∈x Z , then 1 1
1

1 1

i

i i

p r
kr

q q
∈ ⇒ ∈ℤ ℤ and thus 

1 1i
q r , where 

1i
q r denotes that 1i

q  divides r . Hence, 

 
( )1 11 21 1

lcm , , ,
n

r q q q= ⋯ , (47) 
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where lcm stands for lowest common multiple. Applying the 
same reasoning to each dimension one gets the rule 

( )1 2
lcm , , ,

i i i ni
r q q q= ⋯ . Finally, we can interpret the 

property in terms of the columns of ( )DH , the generator matrix 
of the dual lattice (henceforth called the dual matrix).  In 

conclusion, the sublattice
R

Λ of 
R

Λ ∈ L  in the original system 

of coordinates is completely defined by the denominators 
ij
q  

of the dual lattice, so that 

 ( )1 2
lcm , , ,

i i i in
r q q q= ⋯ ,

 
1, 2,i n= … . (48) 

2)  Geometrical interpretation: distortion vs number of cosets 

The number of cosets in a quotient group is  
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( ) ( )
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Λ Λ

∏
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H

ɶ
ɶ

ɶ ɶ
. (49) 

In order to calculate det( )
D
Hɶ  one should observe that (55) 

is uniquely defined by two matrices: one is P , comprising the 

denominators of 
D
Hɶ , and the other we call R , with  the 

numerators of  
D
Hɶ , and both matrices are u.t.: 
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Note that the non-zero elements of R  in each row are 

forced to be equal.  The determinant of 
D
Hɶ  is then 

 ( )
	 	1 1 1

product diagonal volume of
numerators quantization grid

1
det

n n n
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D ii
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and  (49) becomes 
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r p p
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The number of cosets is thus solely determined by diag( )P . 

Geometrical insight into the problem can now be given from: 
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The denominator 1

1

( )
n

i
i

r −

=
∏  corresponds to the volume of 

the elementary quantization grid (see Fig. 20).  

In order to reduce the number of paths in the trellis of a 

lattice in LR , one wants  to keep low value entries in diag( )P , 

while at the same time, a good approximation that minimizes 
( ) ( )D D

F
−H Hɶ , implies having larger 

i
r  values (as these 

ratios are fixed, this constitutes another constraint into the 
problem). For that purposes one presents Algorithm 1, which 

outputs ( )Λ Hɶ ɶ . By construction, the shape of the Voronoi 

regions of this latter lattice are similar to the ones of the 
original Λ . Using the concept introduced in Section VI-B, the 
focusing linear transformation is 

 1( , ) −= ⋅H H H Hɶ ɶF , (54) 

with F close to the identity, i.e., 
F
ε− <IF . By allowing 

an increasing number of cosets, ε can be reduced towards zero.  
 

 
Fig. 20: Approximation versus number of cosets: the dilemma of the 
approximation in the dual lattice (example in a 3D space). 

3)  Algorithm 

Given the condition (48) for the dual matrix, one reduces 
the problem to finding a close dual generator matrix (in the 
Frobenius sense). One starts by applying a QR decomposition 
to the dual matrix, reducing it to an upper triangular (u.t.) form 
via a unitary rigid rotation of the lattice, Q . To make the 
elements in this matrix shorter, one has to: i) LLL-reduce this 
rotated dual lattice, and then ii) find rational approximations 
for the matrix elements via a greedy algorithm. The algorithm 
finds an approximated (or synthetic) dual lattice defined by 
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Note that the Diophantine approximation problem is itself a 
NP-hard problem, solvable by another CVP [57]). 

The core of Algorithm 1 is carried out on the dual matrix 
( )DH . The algorithm starts by shortening the generator vectors 

of ( )DH  and then sorts them in ascendant order of their norm 
from the leftmost column to the rightmost one. This procedure 

minimises 
11
p  and therefore constitutes a first step towards 

minimising Φ , from (49) The algorithm then enters a search 

mode where in each step the largest numerator 
ii
p  is found 

and its accuracy relaxed so that 
ii
p  may diminish. Then, all 

the remaining off-diagonal elements in that row are written 

with the denominator that has just been found, so that 
i ii
r q= , 

as seen in (55). The rational approximation of the diagonal 
elements is relaxed by means of a continuous fraction 
algorithm. 

 

 
ALGORITHM 1: SYNTHESIS OF A LATTICE IN LR 

Input: Generator H , Admissible numb. of paths Γ . 

Output: Approximation 
R

∈Hɶ L ; number of cosets |C|. 

 1: ( ) 1
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4: Do until C < Γ   
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red
DHɶ : for each row i, obtain rational 
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i
r  and with maximum error δ 
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 9: end loop  
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 The complexity of Algorithm 1 is dominated by the LLL 

reduction, O(n4). In addition, the QR decomposition is O(n3), 

sorting is O(nlogn) [58] (sec. 6.5), and the iterations for 

rational approximation is dominated by a continued fractions 

algorithm, having O(n3) [59] . Sphere decoding is well known 

to have a random number of branch expansions during the 
exploration of the tree (unless fixed complexity sphere 
decoding is used [60]). That number varies each time a 
received vector is decoded, and is highly dependent upon the 
noise power. We note that, while in the proposed detector the 
number of cosets is also a random variable, it only affects the 
pre-processing stage. Then, the complexity remains constant 
over the coherence time of that lattice instance. 

Fig. 21 shows an example of how the number of cosets 
evolves as the error tolerance δ increases. At the same time, it 
is also possible to see the corresponding increase of the 
Frobenius distance between the synthetic dual lattice and the 

original dual lattice, ( ) ( )D D

F
−H Hɶ (shown as a percentage). 

Notice that this is the distance between the dual lattices and 
not the distance between the primal lattices (as matrix 
inversion changes the Frobenius norm). This example in  Fig. 
21 is for a n=8 dimensional (real) lattice, with a limit of 

cosets. The algorithm terminates outputting a 

synthetic lattice with Φ=324 cosets after 144 iterations (many 

of them do not lead to a change of variables, which explains 
why there are fewer than 144 points plotted). 

 

 
Fig. 21: Examples of the evolution of the number of cosets and Frobenius 
distance in Algorithm 1 with n=8 dimensional random lattices, as the error 
tolerance δ  increases. 

E. Performance Results and Discussion  

We have assessed the proposed receiver using lattices 
which arise in MIMO communications under Rayleigh flat 
fading channel and compared its performance with the one of 
lattice-reduction-aided receivers (with ZF and with ordered 
successive interference cancellation (OSIC) schemes), which 
are well known for capturing the full diversity provided by 
MLD [61]. The performances of linear ZF, linear minimum 
mean square error (MMSE) and OSIC without lattice-
reduction are also included in the results presented in Fig. 22. 
The proposed trellis-based detection also attains full diversity 
while reducing the gap between lattice reduction and MLD 
and the required number of cosets needed to achieve quasi-
optimum detection is surprisingly small. 

Algorithm 1 searches for an approximate lattice with a 
specified maximum number of cosets Γ (i.e., number of paths 
in a trellis). However, their average number is about half of 
the specified Γ. Fig. 22 shows the performance for a typical 
benchmarking MIMO configuration (4×4 antennas with 64 
QAM). Limiting the admissible number of cosets to Γ=100, 
we observe that an average of 38 paths is enough to synthesise 

good approximated lattices in LR to achieve a performance 
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about 1.2 dB away from ML, coinciding with the performance 
of LLL-OSIC-ZF. With an average of 506 cosets, the gap 
shortens to 0.6 dB. 

For 2×2 configuration with 64-QAM, an average of 20 
cosets have been found to assure the same performance as 
MLD and for the 3×3 setup, the performance is 0.2 dB away 
from MLD with 34 cosets on average. 

The complexity in Algorithm 1 is dominated by the LLL 

reduction, O(n4), added to O(n3) in the QR decomposition, 

and the complexity of the iterations for rational approximation, 

dominated by a continued fractions algorithm, O(n3) [59]. 

Sphere decoding is well known to have a random number of 
branch expansions during the exploration of the tree (unless 
fixed complexity sphere decoding is used [60]). That number 
varies each time a received vector is decoded, and is highly 
dependent on the noise power. We note that, while in the 
proposed detector the number of cosets is also a random 
variable, it only affects the pre-processing stage. Then, the 
complexity remains constant over the coherence time of that 
lattice instance. 

 

 
Fig. 22:   Symbol error probability when detecting in a lattice with n=8 real 
dimensions (4×4 MIMO configuration) with 64-QAM. 

F. Number of cosets 

Algorithm 1 outputs synthetic lattices with a number of 
cosets Φ  which is a random variable. The average number of 
cosets in those returned latticesshould be { }E Φ < Γ , however, 

there are particular instances when a lattice cannot be found 
with a number of cosets Φ < Γ . Those instances are counted 
in the rightmost bin in the histogram, with “*” above the bin. 
The visible in the probability distribution function (pdf) was 
chosen for “*” to represent not more than 1 per cent of the 
lattices. Moreover, all histograms computed were normalised, 
so that they can be a good approximation to pdfs. As an 
example, it is shown a n=8 case in Fig. 23 (which includes a 
graphical representation of the standard deviation as a bar on 
top of the pdf and centred at the average). The total number of 
lattices taken into account to generate the pdfs corresponds to 

the sum of all the instances considered to obtain all the points 
in the SER curves. 

 
Fig. 23:   Pdf of the number of cosets when generating lattices with Algorithm 
1 for n=8 real dimensions (4×4 configurations), limiting to Γ=500. 

 
One surprising result is that the pdfs showing the number of 

cosets present in the various dimension sizes analysed are far 
from being uniform. Indeed, for all the dimension sizes 
investigated, and regardless of the limit Γ , the number of 
cosets tends to cluster around some particular numbers and the 
resulting probability density functions (pdfs) are “almost 
discrete” and “almost periodic”, though they cannot strictly be 
considered as such. This fact is difficult to explain and can 
only be justified by the existence of an underlying number 
theoretic property governing the possible number of coset 
groups in n dimensions, which is a mathematical problem 
beyond the scope of this engineering approach. 

From the generation of the distribution of the number of 
cosets for several MIMO configurations (omitted in this paper 
due to space limitations), it was observed that the number of 
cosets needed for near-optimal performance diminishes for 
smaller alphabets (smaller M ). This happens because the 
distortion between the received lattice and the approximated 

lattice in LR increases as one gets further away from the origin. 

As expected, as the dimensionality goes up, the average 
number of cosets, { }E Φ , required for quasi-optimal detection, 

also grows, however it is found that { }E Φ  is still affordable 

up to 8 dimensions (4×4), which includes the most important 
scenarios in MIMO. 

Finally, note that, i) by construction, the number of trellis 
paths behaves has an upper bound to the number of trellis 
states and ii) note that the length of the trellises (number of 
segments) is determined by the dimensionality of the real 
lattice (n=2NR) and therefore, for the typical number of 
antennas in MIMO, these trellises are rather short. 

VII. CONCLUSIONS 

The existence of multipath propagation in wireless systems 
is known today as an effect than must be exploited in order to 
increase the capacity of a radio link. However, in open loop 
configurations (channel estimated by the receiver, although 
not know by the transmitter), this carries a large complexity 
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problem to the receiver side, which, in essence, is required to 
compute a closest vector problem in a lattice for each received 
vector of symbols. As almost all lattice problems, this problem 
is simple to describe but rather hard to solve optimally. This 
paper frames several suboptimal solutions for CVP in MIMO 
communication systems in the context of lattice geometry. 

When describing the fundamental properties of lattices, the 
geometric relation between a lattice and its dual lattice was 
clarified, which is a geometric relation much ignored in the 
literature. Capitalising on that relation, a technique was 
devised in that samples points lying on sets of hyperplanes that 
have the highest density of lattice points on them. Those 
samples are then quantised to the lattice via zero forcing and 
the best candidate is declared. The technique exhibits a 
considerable gain (up to 7 dB in the 4×4 / 64-QAM case) in 
comparison to OSIC with ZF.  

A major contribution in this paper was the proposal of a 
new type of receiver that maps the problem onto a sequence 
detection problem, solvable by the well known Viterbi 
algorithm. First, a lattice with a trellis is “synthesised” near the 
original received lattice. Then, the original lattice problem is 
focused (i.e., linearly transformed) onto the “synthetic” lattice, 
which processes a trellis description. One can see this as a 
generalization of the zero-forcing concept, extended to a much 
larger family of lattices to map (or focus) the problem onto. 

The derivation of the property that makes a lattice a 
member of the family of lattices with a trellis structure and an 
algorithm was given to create one of those lattices “nearby” 
the typical Gaussian lattices in MIMO. The basis vectors of 
the synthetic lattice and the basis vectors of the original lattice 
are close to each other and for finite QAM alphabets the two 
lattices are roughly the same in the region of interest (i.e., not 
far from the origin). Given this geometric similarity, the 
Voronoi regions of both lattices chiefly overlap. Hence, the 
linear transformation that focuses the original lattice onto the 
synthetic one, is well-conditioned and close to identity, 
leading to a very small noise increase. The distortion of the 
Voronoi regions associated with maximum-likelihood 
detection is therefore minimized and consequently the 
performance attained in the MIMO-CVP is close to optimal. 

For 2×2, 3×3, 4×4 and 6×6 configurations (not all depicted 
for space reasons), decoding on the synthetic lattice 
outperforms all the most used detection techniques with or 
without pre-processing. Moreover, likewise SD, it also attains 
the same diversity as MLD. 

As expected, the number of cosets necessary for near-
optimum performance increases with the dimension of the 
lattices. Note that while the number of nodes to explore in SD 
is random and depends on both the lattice and each received 
vector itself [62], decoding in a trellis has fixed-complexity 
during the period of time while that particular lattice 
represents the channel matrix coefficients, and the algorithm 

run after each channel update is polynomial , O(n4), the same 

as lattice-reduction-aided.  
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