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Abstract—This paper proposes the use of a new family of 
receivers for continuous phase modulation (CPM) having very 
small complexity, operating with both elementary hardware and 
simple numeric processing. It results from an intervention on the 
optimum receiver for signals corrupted by additive white 
gaussian noise (AWGN) on three stages of the process: 
replacement of the bank of filters by projection on Walsh 
functions; derivation of metrics from 1/4 of them by using a 
symmetry-based algorithm; and sequence detection with the M-
algorithm. This receiver had already proved to be quasi-optimum 
on pure AWGN case. On this paper the receiver is tested over 
AWGN and frequency-flat Rayleigh fading (FFRF) with and 
without phase compensation. It is found that the geometric 
algorithm used to derive metrics introduces robustness to phase 
synchronism errors. The research on the reduction limits of the 
space dimension is conducted using catastrophic M-ary CPM 
schemes, taking advantage of their small number of phase states. 
Performance of 1REC h=1/2 16-ary under Rayleigh fading is for 
the fist time presented. All the outcomes prove to be valid for two 
proposed CPM schemes of high power gain. Two optimum CPM 
schemes and their respective sub-optimum receivers for mobile 
communications are presented. The receiver remains quasi-
optimum over the tested multipath channel. The common 
minimum shift keying (MSK) is a particular case of this research. 

I. INTRODUCTION 
Continuous phase modulation (CPM) signals have constant 

amplitude and so they are a good solution for systems requiring 
insensitivity to non-linear amplitude amplification. Their phase 
continuity allows good spectral performance and implies a 
code gain due to the inherent memory effect. These properties 
have motivated the common use of GMSK (gaussian minimum 
shift keying), which is a simple member of the CPM family, in 
widespread use systems such as GSM/DCS, PCS, DECT, CT2 
and Bluetooth. The use of others CPM schemes more spectrally 
efficient and better power efficient was restrained owing to 
excessive detection complexity [1]. The number of analogue 
matched filters (or correlators) needed is often unbearable for 
practical implementation. The number of phase states to be 
detected can also be very large. The conception of simple 
receivers is nowadays a main concern within CPM research. 

I. CPM FORMATTING AND PERFORMANCE 

Every CPM signals can be expressed in the form 

 )),(cos(2),( 0ϕϕω ++= γγ ttTEts css . (1) 
The carrier frequency is fc, where ωc=2πfc, ϕ0 is the 

arbitrary initial phase and Es is the energy per symbol, related 

with the bit energy by Es=log2(M)⋅Eb. Channel symbols are 
γi∈{±1, ±3, ⋅⋅⋅, ±(M-1)}, forming the M-ary sequence γ . Each 
symbol γi carries log2(M) bits as a result of a natural mapping 
of the information bits stream α . The information carried by 
NS channel symbols is keyed in signal’s phase as 
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A constant modulation index, h=p/q, is considered, where p 
and q are integers with no common factors. (h is rational in 
order to have a finite number of phase states.) Phase transition 
pulse shape, q(t), affects phase transitions shape during L 
symbols. However, its effect remains until the end of the 
transmitted sequence. q(t) is defined by the frequency pulse 

g(t): ∫ ∞−
=

t

dgtq ττ )()( . The normalisation q(t) = ∫
∞

0
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1/2 is applied so that the maximum phase transition during a 
symbol time, Ts, is h⋅(M-1)⋅π. Different frequency pulses define 
different CPM families. The most common are: LREC, LRC (L 
is the variable mentioned above) and GMSK [1,2]. LREC is 
defined by g(t)=rect[t/(LTs)]/2, where rect(t)=1 for −1/2<|t|<1/2 
and zero elsewhere. Schemes with 1REC pulses are also known 
as CPFSK (continuous phase frequency shift keying). A 
smother g(t) can improve the spectral efficiency of schemes 
with LREC pulses, an example is the referred LRC which has a 
raised cosine pulse shaping. 

In order to evaluate CPM power performance one uses the 
minimum normalised squared Euclidean distance (MNSED) 
between two signals transporting sequences γ  and γ′ : 
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Bit error rate (BER) is given by (e.g. [1]) 
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C is a constant ≈1. Q(x) is the area under the unit variance 
gaussian distribution in [x, ∞]. Power efficiency comparisons 
can be made from (4), defining the gain relative to MSK: 

 G =10⋅log10( 22
mind )  [dB]. (5) 

Bandwidth is usually given in terms of BεTb where Bε is the 
bandwidth that enclosures ε% of transmitted power and Tb= 
Ts/log(M) is the bit interval. The bit rate is Rb=1/Tb and the 
spectrum efficiency is ζ=1/(BεTb)=Rb/Bε. For MSK B99.0Tb=1.2. 
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A lower h makes phase transitions to become smother and so it 
constrains bandwidth, though that makes MNSED to decrease 
due to the greater similitude among phase transitions during 
each Ts interval. A greater M enhances simultaneously 
spectrum and power behavior at a cost of complexity increase. 

II. OPTIMUM DETECTION 
To obtain metrics for each one of the Ξ phase transitions 

the optimum CPM receiver requires 2Ξ  matched filters (or 
equivalent correlators), one for each branch I and Q. Metrics 
have to be calculated for all transitions τΙ,b ∈{τ Ι,1, τ Ι,2, ⋅⋅⋅, τ Ι,Ξ } 
and all τQ,b∈{τ Q,1 ,τ Q,2,⋅⋅⋅,τ Q,Ξ}. Considering n(t) additive white 
gaussian noise (AWGN), after baseband conversion one gets 
the y(t)=s(t,γ)+n(t). I and Q metrics for b= 1, 2, ⋅⋅⋅, Ξ, are then 

Λi (b)= ∫
sT

bi dttty )()( I,I, τ + ∫
sT

bi dttty )()( Q,Q, τ =ΛI,i(b)+ΛQ,i(b). (6) 

In more detail, for the same b, the branch metrics are 
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Finally, having all the metrics, the problem is solved by a 
maximum likelihood sequence detector (MLSD). The detection 
complexity of CPM schemes is measured in terms of Ξ and the 
total number of states, being that number 

 S =q⋅M L−1  ,  for even p (8a) 
 S =2q⋅M L−1  ,  for odd p. (8b) 

For the case of full response systems (L=1), S corresponds 
to the number of physical phase states. The number of phase 
transitions is therefore Ξ=S⋅M. For this reason the number of 
2Ξ filters becomes intolerable for high M and/or weak h.  

Each transition has the incremental metric 

Λi(b)= 2)(),( tty bi τγ − = )(),,(2)(),( 22 ttytty bibi τγτγ −+
(9) 

As a result, MLSD must search for the sequence having 
maximum cumulative metric given by the inner product 

 Λi(b) = )(),,( tty bi τγ . (10) 

III. RECEIVER STRUCTURE 
Initially, the bank of matched filters is replaced by a system 

of projections into a signal space resulting from the spanning of 
very few Walsh functions [3]. Afterwards, a processor 
calculates metrics using matrix algebra [4, 5]. The second 
simplification is made on the metrics calculation block for each 
channel symbol. It is applied an algorithm and a data structure 
that, jointly, consent to obtain all the metrics keeping in 
memory only 1/8 of the phase transitions, and allow to obtain 
their total number from just 1/4 of the metrics [6]. The method 
is valid for a subclass of CPM schemes (which comprehend the 
best ones), where phase transitions have certain symmetry 

relations that can be translated to relations between positions 
on a table. Finally, MLSD is made with the M-algorithm. The 
receiver structure is depicted in Fig. 1. 
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Figure 1. Structure of the proposed receiver. 

A. Projections and calculus of 1st quadrant metric 
Metrics are calculated on a F-dimensional Walsh space, 

generated by F Walsh functions [3] of order k  denoted as 
wF,n(t); n=1, 2, 3,⋅⋅⋅,F=2k; each one with F=2k symbols, being 
them wF,n[j], j=0, 1,⋅⋅⋅, F=2k, for k ∈ Ζ+: 
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with n=0, 1,⋅⋅⋅, F-1=2u−1, u ∈ Ζ+, and rect(t)=1 for <|t|<1/2 and 
zero elsewhere. Symbols wF,n[j]∈{−1, +1} and are defined by a 
recursive method that builds Walsh-Hadamard matrixes [3]. 
Generalizing (3) it can be proved that the bth metric in the 
Walsh space when applying a MLSD criterion is given by 
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for b= 1, 2, ⋅⋅⋅, Ξ. Metric calculus is made merely using the 
projection of the received baseband signal y(t) into the Walsh 
space. Those projections coefficients are 
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From (12), the transitions metrics are 
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where ci,n are the projection coefficients of the transition during 
symbol interval i , as given by (13), and cb,n are projection 
coefficients of the bth transition belonging to the set of Ξ 
possible ones. Using the projection vectors and (10),  it comes 
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These coefficients can be easily determined by: 
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Moreover, each integrator does not need to be dumped at 
every Ts/F sub-interval. By sampling the continuous integration 
it is possible do know the partial integration values making 
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The calculation on (17) only requires two integrators, a 
sampling procedure and a calculus unit [5], independently of 
the CPM scheme. 

The vector of Ξ metrics is the column vector 

 iΛ = [ ]T22222 )()1()()2()1( Ξ+ iiiii dbdbddd LL . (18) 
The received ith transition has a description on the Walsh 

space given by the projection vector 

 [ ]Finiiii cccc ,,2,1, LL=c    ,   i=1, 2,⋅⋅⋅, Ns. (19) 

Each possible transitions is stored on on similar vectors: 

 [ ]Fbnbbbb cccc ,,2,1, LL=c    ,   b=1, 2,⋅⋅⋅, Ξ. (20) 

Coefficients, cb,n, can be determined and memorized in 
advance. Vectors cb can form matrix C of dimensions Ξ×F 
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Having C, the incremental distance vector (metrics) is 
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conducting to the intended column vector with the metrics. 

B. Metric derivations 
By restraining CPM schemes to those having a number of 

states S=0 mod 4 (S ≥4), one can reduce memory size and the 
number of operations. Only transitions metrics associated to 
transitions emerging from first quadrant must be calculated, 
and only for the in phase branch. All the others metrics (other 
quadrants and Q ones) are related to them, substituting integral 
operations by simple copy and paste of real numbers. For that 
class of schemes we can always distribute the states by the four 
quadrants in a symmetric manner (Fig. 2), placing q/2 states 
inside each quadrant. In Fig. 2 it is analyzed a case of a 
transition τb in quadrant I. It’s possible to see that the in phase 
transition, τΙ,b, is the equal to the one of τb’’ in quadrant IV and 
symmetric of τb’’. Observations of this type are also illustrated 
for the Q branch. The channel symbols γm form the vector γτ= 
{γ1, γ2,⋅⋅⋅, γM}. Notation such as τ (γτ [m]) refers to a phase 
transition associated to the symbol of the vector in position m. 
τ (γb) denotes exactly the same in a shorter way, being m=b–
(M× (“state #”-1)). For states number n1=1, 2,⋅⋅⋅, S, inside 
quadrants I, II, III and IV, the procedure to obtain all the 
metrics Λb, using the specified data structures, should be: 

• Q.I: calculate the metrics for each M transition initiating 
in each state inside the quadrant I. For each Τ [b=n1+ n2, 
k] =τ (γτ [n2]), for n2=1, 2,⋅⋅⋅, M, calculate: 
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One can also remember that phase transitions and its sine 
and cosine functions are related by sin(ϕ)=cos(ϕ − π /2). For 
that reason matrix QΤ , containing the transitions signals in 
quadrature, does not need to be stored. Those transitions 
already exist inside matrix IΤ , each one located precisely 
q/2⋅M positions before, considering mod Ξ operations. So (24b) 
can be applied using: 
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Up until now, Ξ/4 metrics have been successively 

calculated and placed inside Λ in positions bI = n1+n2. States 
)( 1nS  are associated to n1=1, 2,⋅⋅⋅, S/4 and transitions to n2=1, 

2,⋅⋅⋅, M. Metrics for quadrants II, III and IV will be copied from 
them in the following manner: 

• Q.II: Metrics associated to transitions initiating in states 
)( 1nqS −  are copied from positions bI to positions bII for the 

symmetric symbol of τγ  (due to the inverse rotations exposed 
in Fig. 2) respecting 2

I,
2
I, bb dd −=  ; 2

Q,
2
Q, bb dd =  ; bII= 

(q−n1)M+(M−n2). 
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Figure 2:. Metric relations and coping procedures (example for h=1/6, S=12) 

• Q.III: For states ))(( 1 qnqS +− , metrics should be copied from 
bI to positions bIII respecting 2

I,
2
I, bb dd −= ; 2

Q,
2
Q, bb dd −= ; bIII = 

bII+q = n1+n2+qM. 

• Q.IV: For the states ))(( 1 qnqS +− , metrics should be copied 
from bI to positions bIV respecting 2

I,
2
I, bb dd = ; 2

Q,
2
Q, bb dd −= ; bIV = 

bII+q = (q-n1)M+(M-n2)+qM. 

In all cases n2 always runs the cycle n2=1, 2, ⋅⋅⋅, M. Metrics 
are copied and pasted between positions on a table by this 
manner, affected by “±” signals depending on quadrants and if 
it’s a ΛI,b or ΛQ,b metric. The final vector of Ξ metrics, Λi, 
stores the sums of those partial metrics. 

C. Complexity constrained MLSD 
Having all the metrics the problem remains on search of the 

most probable sequence of phase transitions. For that purpose 
the Viterbi Algorithm (VA) is widely used. It performs 
maximum likelihood sequence detection (MLSD) but its 
complexity can limit its use [7]. Complexity constrained 
MLSD can be described by the search algorithm, which 
separates the S states into C classes. Hence, every class 
contains S/C states. Within each class some paths are discarded 
at each symbol decision. B is the number of paths chosen to 
remain in competition inside each class. This algorithm and its 
variables are denoted by SA(B, C ). One can recognize the VA 
as being the particular case SA(1, S ). The entire SA(B,C) 
family performs MLSD [8]. Whenever one search is conducted 
inside partitions the algorithm is usually named reduced state 
sequence detection (RSSD). RSSD can be denoted by SA(1, 
C). At the beginning of each interval MB transitions emerge, 
but only Np=BC paths are stored as initial states of the next 
iteration and Np is always <S. So, SA(B=Np, 1) conducts to the 
best performance since it is the least constrained situation. The 
M-algorithm corresponds to the SA(B, 1), being M=B. This is 
the algorithm implemented on the receiver due to its simplicity 
and for belonging to the family of best performance. In the 
limit of B=1 one gets decision feedback (DF), i.e., SA(1, 1); 
only one path is traced for the sequence detection. It 
corresponds to the case of less computational weight but the 
probability of losing the correct path is the highest one. 

IV. TEST SCHEMES, CHANNEL AND RECEIVER 
In order to research the behaviour of the receiver we have 

used the h=1/2 full response M-ary schemes presented in Table 
1 (MSK on the first line), taking advantage of their very low 
number of states (S=4). Those simple schemes happen to be 
catastrophic, that is, their MNSED has a local mean for the 
used h=1/2, being the real 2

mind very distant from its upper 
bound [2]. That concerns only to the MLSD block and should 
not influence the research on the metric calculus using the 
CPM space approximation. From [2,5,9,10] we point out two 
optimum full response mono-h CPM schemes also 
characterized on Table 1. 

Table 1: Characteristics of 1REC CPM schemes (gain 
evaluation for channels with AWGN) 

h M S B99.0Tb 2
mind  G [dB] Ξ 2Ξ 

2 4 1.20 2.0 0 8 16 
4 4 1.30 2.0 0 16 32 
8 4 1.55 3.0 1.76 32 64 

1/2 

16 4 N.A. 4.0 3.0 64 128 
4 40 1.18 3.60 2.56 160 320 

9/20 
8 40 1.40 5.40 4.31 320 640 

 
The selected schemes of h=0.45=9/20 are the best 4-ary and 

8-ary CPFSK schemes in terms of power gains within the 
region of useful spectral efficiencies which preserve an 
acceptable number of states (S=40). These two schemes of 
h=0.45 share another interesting feature: they are precisely 
examples of rare schemes with a MNSED coincident with their 
upper bound curves (determined by simulation in [1,2]). 

In narrow-band wireless systems the signal is received with 
AWGN and a multiplicative distortion (frequency-flat Rayleigh 
fading − FFRF). The latter is obtained by means of two 
independent gaussian processes (nx, ny), being 

 y(t,γ)=R(t)⋅s(t,γ)+n(t)= 22
yx nn + ⋅s(t,γ)+n(t). (28) 

The classical Doppler filtering of the Rayleigh process R(t) 
was applied, considering a scenario with a carrier on 1 GHz, a 
relative velocity of ν=50 km/h among transmitter and receiver, 
and a bit rate of 312.5 kbit/s. This conducts to a maximum 
frequency deviation for the Doppler spectrum of fmax=ν/λ= 46.3 
Hz (λ being the carrier wavelength). The random phase shift 
introduced by this type of fading is uniformly distributed, being 
∆φ ∈[−π, +π]. In general it is a straightforward process to 
estimate the FFRF channel phase response, thus, it can be 
compensated. In our simulation for the h=1/2 schemes we 
consider the two extreme cases: no phase compensation and 
total phase compensation, thereby emulating ideal coherent 
demodulation. For the h=9/20 schemes, the interesting ones, 
the proposed receivers are assessed considering an error phase 
limited to 10%, i.e. ∆φ ∈[−0.1π, +0.1π], jointly with those 
extreme cases of phase synchronism. Though, amplitude fading 
is never compensated. 

From [4, 5] it is known that for all tested schemes a number 
of Walsh functions equal to M (F=M) assures near optimum 
performance. For higher Walsh space dimensions (F>M) no 
significant gains are detected. A F<M implies an abrupt decay 



 

of performance. This rule also applies to the interesting 
schemes of h=9/20: in AWGN one gets for M=8 with F=8 a 
BER curve as close as 0.2 dB from the optimum detection 
curve and for M=4 with F=4 the power loss is less than 0.1 dB. 
Consequently, in this paper we tested the same receivers [5].In 
[11] it was seen that a 10% phase estimation virtually 
introduces no error on the detection. For that reason, that is the 
standard used for testing the receiver during this research. It 
was also proved in [11] that in AWGN the M-algorithm can 
assure quasi-optimum performance for a number B of paths in 
the trellis as low as the M-arity. So the proposed receivers are 
all defined with B=M=F. 

V. RESULTS 
Results for performance in terms of bit error rate (BER) are 

given in both Figures 3 and 4. Both figures include the BER 
curve for ideal antipodal modulation ( 22

min =d ) and the BER 
curve associated to 7.12

min =d , which was proposed by [12] to 
describe real MSK, both for AWGN. On Figure 4 the curve for 
the proposed receiver for MSK is repeated from Figure 3 for a 
better comparison of the three proposed schemes and 
associated receives: quaternary and octonary 1REC h=9/20 and 
MSK, using receivers defined by the rules given above. 

The proposed MSK receiver presents a power loss of 1.5 
dB to the optimum receiver (optimum on AWGN) with perfect 
phase estimation. It can be seen that, over the FFRF channel, 
an increase on modulation complexity does not imply such a 
fast increase in G as on AWGN. For example, for h=1/2, M=8 
or M=16 conduct to the same G≈3 dB to the MSK curve. The 
h=9/20 schemes exhibit over FFRF less significant gains to 
MSK than the ones found only with AWGN. The proposed 
receivers show a power loss of ≈2dB to the corresponding 
optimum receiver with coherent demodulation (with phase 
estimation and compensation). 

VI. CONCLUSIONS 
A CPM receiver with high complexity reduction at all 

detection stages proved to be robust in terms of phase failures 
over frequency-flat Rayleigh fading. The rules previously 
found with AWGN, which defined limits for the receiver 
parameters in terms of Walsh functions and number of states in 
the M-Algorithm, proved to achieve almost the same results 
with the fading environment for some test schemes and as well 
for interesting high gain schemes. Near-optimum performance 
was attained when using a receiver with a front-end based on a 
Walsh of dimension as small as the M-arity and propagating 
the same number of paths in the trellis. In addition, the metric 
derivation algorithm is found to be robust when dealing with 
phase errors introduced by the considered fading. 
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Figure 3: Effect of the phase estimation on the optimum receiver (with 
matched filters and Viterbi detection) when operating with the metrics 
derivation algorithm for the schemes having h=1/2. 
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Figure 4: Comparison of reduced complexity receivers and optimum receivers 
with and without phase compensation for the optimum h=9/20 schemes. 


