Limits for CPM Signals
Representation by Walsh Functions

Francisco A. Monteiro¹, António J. Rodrigues¹,²

¹ Instituto de Telecomunicações and ISCTE
² Instituto de Telecomunicações and Instituto Superior Técnico, Technical University of Lisbon
Av. Rovisco Pais, 1049-001 Lisbon, Portugal
Tel: +351 218418484; Fax: +351 218418472; E-mail: frmo@lx.it.pt

Abstract — This paper explores the feasible limits for complexity reduction of a very simple front-end block for the calculus of phase transition metrics on a continuous phase modulation (CPM) receiver. A quasi-optimum receiver of very low complexity is attained by splitting the function of the optimum receiver bank filters in two blocks: calculus of projections coefficients on a low dimensional space of Walsh functions followed by simple matrix calculus. A sequence detection algorithm follows this block. The presented approach enables the reduction of the complexity of a quasi-optimum receiver. A quasi-optimum receiver of very low complexity is attained by splitting the function of the optimum receiver bank filters in two blocks: calculus of projections coefficients on a low dimensional space of Walsh functions followed by simple matrix calculus. A sequence detection algorithm follows this block. The presented approach enables the reduction of the complexity of a quasi-optimum receiver.

The carrier frequency is \(f_c \), where \(\omega_c = 2\pi f_c \), \(\varphi_0 \) is the arbitrary initial phase and \(E_i \) is the energy per symbol, related with the bit energy by \(E_b = \log_2(M)E_i \). Channel symbols are \(\gamma \in \{ \pm 1, \pm 3, \ldots, \pm (M-1) \} \), forming the \(M \)-ary \(\gamma \). Each symbol \(\gamma \) carries \(\log_2(M) \) bits as a result of a natural mapping of the information bits stream \(a \). The information carried by \(N_S \) channel symbols is keyed in signal’s phase:

\[
\varphi(t, \gamma) = 2\pi h \sum_{i=1}^{N_S} \gamma_i q(t-iT_s).
\]

A constant modulation index, \(h = p/q \), is considered, where \(p \) and \(q \) are integers with no common factors. \(h \) is rational in order to have a finite number of phase states. Phase transition pulse shape, \(q(t) \), affects phase transitions shape during \(L \) symbols. However, its effect remains until the end of the transmitted sequence. \(q(t) \) is defined by the frequency pulse \(g(t) \): \(q(t) = \int g(\tau) d\tau \).

The number of phase states to be detected can vary large as well. Conception of simple receivers is nowadays a main concern within CPM research. This paper shows that Walsh functions can generate a space where it is possible to find signals close to the original CPM signals. Digital signal processing (DSP) allows fast matrix calculus using both received and stored signals.

I. INTRODUCTION

Continuous phase modulation (CPM) signals have constant amplitude and so they are a good solution for systems requiring insensitivity to non-linear amplitude amplification. Their phase continuity allows good spectral performance and implies a code gain due to the inherent memory effect. These properties have motivated the common use of GMSK (gaussian minimum shift keying), which is a simple member of the CPM family, in widespread use systems such as GSM/DCS, PCS, DECT, CT2 and Bluetooth. The use of other CPM schemes more spectrally efficient and better power efficient was restrained owing to excessive detection complexity [1]. The number of analogue matched filters (or correlators) needed is often unbearable for practical implementation. The number of phase states to be detected can vary large as well. Conception of simple receivers is nowadays a main concern within CPM research. This paper shows that Walsh functions can generate a space where it is possible to find signals close to the original CPM signals. Digital signal processing (DSP) allows fast matrix calculus using both received and stored signals.

II. CPM FORMATTING AND PERFORMANCE

Every CPM signals can be expressed in the form:

\[
s(t, \gamma) = \sqrt{2E_i/T_s} \cos(\omega_c t + \varphi(t, \gamma) + \varphi_0).
\]

The number of phase states to be detected can vary large as well. Conception of simple receivers is nowadays a main concern within CPM research. This paper shows that Walsh functions can generate a space where it is possible to find signals close to the original CPM signals. Digital signal processing (DSP) allows fast matrix calculus using both received and stored signals.

The carrier frequency is \(f_c \), where \(\omega_c = 2\pi f_c \), \(\varphi_0 \) is the arbitrary initial phase and \(E_i \) is the energy per symbol, related with the bit energy by \(E_b = \log_2(M)E_i \). Channel symbols are \(\gamma \in \{ \pm 1, \pm 3, \ldots, \pm (M-1) \} \), forming the \(M \)-ary \(\gamma \). Each symbol \(\gamma \) carries \(\log_2(M) \) bits as a result of a natural mapping of the information bits stream \(a \). The information carried by \(N_S \) channel symbols is keyed in signal’s phase:

\[
\varphi(t, \gamma) = 2\pi h \sum_{i=1}^{N_S} \gamma_i q(t-iT_s).
\]

A constant modulation index, \(h = p/q \), is considered, where \(p \) and \(q \) are integers with no common factors. \(h \) is rational in order to have a finite number of phase states. Phase transition pulse shape, \(q(t) \), affects phase transitions shape during \(L \) symbols. However, its effect remains until the end of the transmitted sequence. \(q(t) \) is defined by the frequency pulse \(g(t) \): \(q(t) = \int g(\tau) d\tau \).

The number of phase states to be detected can vary large as well. Conception of simple receivers is nowadays a main concern within CPM research. This paper shows that Walsh functions can generate a space where it is possible to find signals close to the original CPM signals. Digital signal processing (DSP) allows fast matrix calculus using both received and stored signals.
Bandwidth is usually given in terms of B_T, B_T is the bandwidth that enclosures $\varepsilon/2$% of all transmitted power. $T_b = T/T_b\log(M)$ is the bit interval; bit rate is $R_b = 1/T_b$. For MSK $B_{00}T_b = 1.2$. Spectrum efficiency is thereby $\varepsilon = 1/(B_T T_b) = R_b / B_T$. By reducing h phase transitions get smoother, tightening bandwidth, but that also forces MNSED to decrease due to the greater similitude among transitions during each T_b interval. A greater M enhances simultaneously spectrum and power behaviour at a cost of boost in complexity.

III. OPTIMUM DETECTION

To obtain metrics for each one of the Ξ phase transitions the optimum CPM receiver requires 2Ξ matched filters (or equivalent correlators), one for each branch I and Q. Metrics have to be calculated for all transitions $r_{i,b} \in \{r_{11}, r_{12}, \ldots, r_{1\Xi}\}$ and all $r_{0,b} \in \{r_{01}, r_{02}, \ldots, r_{0\Xi}\}$. Considering $m(t)$ additive white gaussian noise (AWGN), after baseband conversion one gets the $y(t) = s(t) + m(t)$. I and Q metrics for $b = 1, 2, \ldots, \Xi$, are then

$$\Lambda_i(b) = \int_{T_i} y_{i,b}(t) r_{i,b}(t) \, dt = \lambda_i(b) + \Lambda_{0,i}(b). \quad (5)$$

In more detail, for the same b, the branch metrics are

$$\Lambda_{i,i}(b) = \int_{T_i} y(t) \cos[2\pi h \gamma_i, q(t)] \, dt \quad (6a)$$

$$\Lambda_{i,q}(b) = \int_{T_i} y(t) \sin[2\pi h \gamma_i, q(t)] \, dt \quad (6b)$$

Finally, having all the metrics, the problem is solved by a maximum likelihood sequence detector (MLSD). The detection complexity of CPM schemes is measured in terms of Ξ and the total number of states, being that number $S = q \cdot M^{L-1}$, for even p and $S = 2q \cdot M^{L-1}$ for odd p. In the case of full response systems ($L=1$), S corresponds to the number of physical phase states. The number of phase transitions is therefore $\Xi = S/M$. For this reason the number of 2Ξ filters becomes intolerable for high M and/or weak h.

As a result, MLSD must search for the sequence having maximum cumulative metric given by the inner product

$$\Lambda_i(b) = \langle y(t, \gamma_i), r_{i,b}(t) \rangle \quad. \quad (7)$$

IV. PROJECTIONS AND METRIC CALCULUS

Metrics are calculated on a F-dimensional Walsh space, generated by F Walsh functions \cite{3} of order k denoted as $w_{F,r}(j); r=1, 2, 3, \ldots, F=2^k$; each one with $F=2^k$ symbols, being them $w_{F,r}(j), j=0, 1, \ldots, F=2^k$, for $k \in \mathbb{Z}^+$:

$$\tilde{w}_{F,r}(t) = \frac{1}{\sqrt{T_i}} \sum_{j=0}^{2^k} w_{F,r}(j) \cdot \text{rect} \left[t - jT_i/F \right] \quad (8)$$

with $n=0, 1, \ldots, F-1=2^k-1, u \in \mathbb{Z}^+$, and $\text{rect}(t)=1$ for $|t|<1/2$ and zero elsewhere. Symbols $w_{F,r}(j) \in \{-1, +1\}$ and are defined by a recursive method that builds Walsh-Hadamard matrices \cite{3}. Applying (7), it can be proved that the b^{th} metric in the Walsh space when applying a MLSD criterion is given by

$$\Lambda_i(b) = \left[\sum_{j=0}^{2^k} \int_{T_i} y(t) \cdot \tilde{w}_{F,r}(t) \, dt - \int_{T_i} s(t, \gamma_i) \cdot \tilde{w}_{F,r}(t) \, dt \right]^2$$

for $b = 1, 2, \ldots, \Xi$. Metric calculus is made merely using the projection of the received baseband signal $y(t)$ into the Walsh space. Those projections coefficients are

$$c_{i,b} = \frac{1}{\sqrt{T_i}} \sum_{j=0}^{2^k} y(t) \cdot \tilde{w}_{F,r}(t - i T_i) \, dt \quad (10)$$

From (9), the transition metrics are

$$\Lambda_i(b) = \frac{1}{\sqrt{T_i}} \sum_{j=0}^{2^k} c_{i,b} \cdot c_{i,b}^* \quad, \quad b = 1, 2, \ldots, \Xi \quad. \quad (11)$$

where $c_{i,b}$ are the projection coefficients of the transition during symbol interval i, as given by (10), and $c_{i,b}$ are projection coefficients of the b^{th} transition belonging to the set of Ξ possible ones. Using the projection vectors and (7), (11) becomes

$$\Lambda_i(b) = \frac{1}{\sqrt{T_i}} \sum_{j=0}^{2^k} c_{i,b} \cdot c_{i,b}^* \quad, \quad b = 1, 2, \ldots, \Xi \quad. \quad (12)$$

These coefficients can be easily determined by:

$$c_{i,b} = \frac{1}{\sqrt{T_i}} \sum_{j=0}^{2^k} w_{F,r}(j) \int_{T_i} y(t, \gamma_i) \cdot \tilde{w}_{F,r}(t) \, dt \quad. \quad (13)$$

Moreover, each integrator does not need to be dumped at every T/F sub-interval. By sampling the continuous integration it is possible to know the partial integration values making

$$c_{i,b} = \frac{1}{\sqrt{T_i}} \sum_{j=0}^{2^k} w_{F,r}(j) \int_{T_i} y(t, \gamma_i) \cdot \tilde{w}_{F,r}(t) \, dt \quad. \quad (14)$$

The calculation on (14) only requires two integrators, a sampling procedure and a calculus unit, independently of the CPM scheme.

The vector of Ξ metrics is the column vector

$$\Lambda_i = [d_{i}^{(1)} \ d_{i}^{(2)} \ \cdots \ d_{i}^{(b)} \ d_{i}^{(b+1)} \ \cdots \ d_{i}^{(\Xi)}]^{T} \quad. \quad (15)$$

The received i^{th} transition has a description on the Walsh space given by the projection vector

$$\mathbf{e}_{i} = [c_{i,1} \ c_{i,2} \ \cdots \ c_{i,b} \ \cdots \ c_{i,\Xi}] \quad, \quad i=1, 2, \ldots, N_p. \quad (16)$$

Each possible transitions is stored on similar vectors:

$$\mathbf{e}_{b} = [c_{b,1} \ c_{b,2} \ \cdots \ c_{b,b} \ \cdots \ c_{b,\Xi}] \quad, \quad b=1, 2, \ldots, \Xi. \quad (17)$$
Coefficients, $c_{0,n}$, can be determined and memorized in advance. Vectors c_n can form matrix C of dimensions $\Xi \times F$

$$C=\begin{bmatrix} c_1 & c_{1,2} & \ldots & c_{1,n} & \ldots & c_{1,F} \\ c_2 & c_{2,1} & \ldots & c_{2,n} & \ldots & c_{2,F} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ c_n & c_{n,1} & \ldots & c_{n,n} & \ldots & c_{n,F} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ c_F & c_{F,1} & \ldots & c_{F,n} & \ldots & c_{F,F} \end{bmatrix}$$

(18)

Having C, the incremental distance vector (metrics) is

$$A_i=\begin{bmatrix} d_i(1) \\ d_i(2) \\ \vdots \\ d_i(h) \\ d_i(\Xi) \end{bmatrix}=\begin{bmatrix} c_{i,1} & c_{i,2} & \ldots & c_{i,n} & \ldots & c_{i,F} \\ c_{i,2} & c_{i,1} & \ldots & c_{i,n} & \ldots & c_{i,F} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ c_{i,n} & c_{i,n} & \ldots & c_{i,1} & \ldots & c_{i,F} \\ c_{i,F} & c_{i,F} & \ldots & c_{i,F} & \ldots & c_{i,F} \end{bmatrix}$$

$$=C \cdot e_i^T, \quad i=1, 2, \ldots, N_s.$$

(19)

corresponding to the column vector containing the Ξ metrics.

V. TEST SCHEMES

In order to research the behaviour of the receiver we have used the $h=1/2$ full response M-ary schemes presented in Table 1 (MSK on the first line), taking advantage of their very low number of states $(S=4)$. Those simple schemes happen to be catastrophic, that is, their MNSED has a local mean for the used $h=1/2$, being the real d_{min}^2 very distant from its upper bound [2]. That concerns only to the MLSD block and should not influence the research on the metric calculus using the given CPM space approximation.

From [2,4,5] we point out two optimum full response mono-h CPM schemes also characterized in Table 1.

Table 1: Characteristics of 1REC CPM schemes

<table>
<thead>
<tr>
<th>h</th>
<th>M</th>
<th>S</th>
<th>B_{ms,T_s}</th>
<th>d_{min}^2</th>
<th>G (dB)</th>
<th>Ξ</th>
<th>Ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>2</td>
<td>4</td>
<td>1.20</td>
<td>2.0</td>
<td>0</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>1.30</td>
<td>2.0</td>
<td>0</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4</td>
<td>1.55</td>
<td>3.0</td>
<td>1.76</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4</td>
<td>(a)</td>
<td>(a)</td>
<td>(a)</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>9/20</td>
<td>4</td>
<td>40</td>
<td>1.18</td>
<td>3.60</td>
<td>2.56</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>40</td>
<td>1.40</td>
<td>5.40</td>
<td>4.31</td>
<td>320</td>
<td>640</td>
</tr>
</tbody>
</table>

Table 1 positions where “(a)” is found are not available; they are obtained in Section VI. The selected schemes of $h=0.45=9/20$ are the best 4-ary and 8-ary CPFSK schemes in terms of power gains within the region of useful spectral efficiencies which preserve an acceptable number of states $(S=40)$. Those two schemes of $h=0.45$ share another interesting feature: they are examples of rare schemes with a MNSED coincident with their upper bound curves (determined by [1,2]).

VI. RESULTS

Results for performance in terms of bit error rate (BER) for detection under AWGN are depicted in Figures 1 and 2.

![Figure 1: Effect of the Walsh space dimension for $h=1/2$, 1REC schemes.](image1.png)

![Figure 2: Effect of the Walsh space dimension for optimum $h=9/20$, 1REC schemes.](image2.png)

Results for the optimum reception of 1REC, $h=1/2$, $M=16$ plotted in Figure 4 (a) are achieved for the fist time as a result of the presented research: a gain of ≈ 3 dB can be detected, corresponding to $d_{\text{min}}^2 \approx 4$ (half the bound value for d_{min}^2 calculated by [1]).

For better power gain assessment all figures include
both BER curve for ideal antipodal modulation ($d^2_{in} = 2$) and BER curve associated to $d^2_{in} = 1.7$, proposed by [6] to describe real MSK. It can be seen that an increasing number of Walsh functions, F, is required when a greater M scheme is considered. For all tested schemes a number of Walsh functions equal to M (i.e. $F=M$) assures near optimum performance. For $F>M$ no significant gains were detected. A decreasing value of F implies an abrupt loss.

This method was firstly proposed by [7] for schemes 3RC (partial response scheme) with $M=2$ and $M=4$ and a varying h. It was also seen there that power penalty decreases for small modulations indexes (which are the interesting ones in terms of bandwidth). This fact is coherent with the greater smoothness on the phase transitions of low h schemes (less abrupt signals) which bring CPM signals closer to the Walsh space. Those results from [7] also show that for those schemes even when $F=2$ the power penalty is always <0.5 dB. For $F=4$ and for $F=8$ the loss is always <0.4 dB and <0.1 dB respectively for schemes having $h<0.7$. These impressive results were also verified on other partial response quaternary schemes with GMSK pulses with $L=5$ and $L=6$, and $h=1/4, 1/5$ and 1/6 [8].

From the attained results it can be said that the rule $F≥M$, found out for the simple but catastrophic schemes, can be extrapolated to the interesting schemes of $h<9/20$, presented in section V, which were also tested under AWGN. More, simulations for the optimum receiver confirms the expected gains showed in Table 1 for those $h<9/20$ schemes: $G_{e}=2.6$ dB for $M=4$ and $G_{e}=4.3$ dB for $M=8$. When applying the Walsh space to the optimum $h<9/20$ schemes one gets for $M=8$ with $F=8$ a BER curve as close as 0.2 dB from the optimum detection curve, as seen in Figure 2 (a). For $M=4$ with $F=4$ the power loss is less than 0.1 dB – Figure 2 (b). Also notice that $h=0.45$ assures another transitions than $h=0.5$.

VII. CONCLUSIONS

The first results of [7] where extended in this paper and some patterns were found to predict the error robustness for schemes using this low complexity front-end computing CPM metrics based on a Walsh functions. The good approximation of CPM signals by such simple functions is justified by the fact of CPM signals being inherently narrowband signals.

By assessing bit error rate performance with different Walsh space dimensions it was found that similar patterns occur for different M-ary schemes. A decrease on the order of the used set of Walsh functions degrades performance, being this effect more important for schemes with a greater M.

It was established that near-optimum performance is attained when using a Walsh space dimension as small as M. The use of a greater number of functions permits little performance improvement. The rule is valid at least for schemes with $h<0.5$ (with are the most interesting ones in terms of bandwidth) and $M<16$ (the feasible ones in terms of complexity for MLSD) and proved to remain valid when applied to full response optimum gain schemes (equal to local power upper bound).

As a particular a case, it was showed that MSK can be detectable in a quasi-optimum manner just sampling twice a continuous integrator during each symbol interval.

The metric calculus made with this simple technique can still be applied when using symmetry relations to derive metrics among different quadrants [9]. Its joint application with both [9] and the use of the M-algorithm ruled by the results in [10], enabled the definition of a very low quasi-optimum receiver analysed in [11,12] using the optimum schemes selected and tested here.

ACKNOWLEDGEMENT

This work was supported by FCT under the POSI program sponsored by FEDER.

REFERENCES

